[1] Pacheco F A L, Santos R M B, Fernandes L F S, et al. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal[J]. Science of the Total Environment, 2015, 537: 421-440. DOI: 10.1016/j.scitotenv.2015.07.127.
[2] Huno S K M, Rene E R, Van Hullebusch E D, et al. Nitrate removal from groundwater: A review of natural and engineered processes[J]. Journal of Water Supply: Research and Technology—Aqua, 2018, 67(8): 885-902. DOI: 10.2166/aqua.2018.194.
[3] Blarasin M, Cabrera A, Matiatos I, et al. Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses[J]. Science of the Total Environment, 2020, 741: 140374. DOI: 10.1016/j.scitotenv.2020.140374.
[4] Chen N W, Peng B R, Hong H S, et al. Nutrient enrichment and N:P ratio decline in a coastal bay-river system in southeast China: The need for a dual nutrient(N and P)management strategy[J]. Ocean & Coastal Management, 2013, 81: 7-13. DOI: 10.1016/j.ocecoaman.2012.07.013.
[5] Dan-Hassan M A, Olasehinde P I, Amadi A N, et al. Spatial and temporal distribution of nitrate pollution in groundwater of Abuja, Nigeria[J]. International Journal of Chemistry, 2012, 4(3): 104-112. DOI: 10.5539/ijc.v4n3p104.
[6] Lotfata A, Ambinakudige S. Factors affecting the spatial pattern of nitrate contamination in Texas aquifers[J]. Management of Environmental Quality: An International Journal, 2019, 31(4): 857-876. DOI: 10.1108/MEQ-05-2019-0097.
[7] Vystavna Y, Diadin D, Grynenko V, et al. Determination of dominant sources of nitrate contamination in transboundary(Russian Federation/Ukraine)catchment with heterogeneous land use[J]. Environ Monit Assess, 2017, 189: 509. DOI: 10.1007/s10661-017-6227-5.
[8] Yan B Z, Xiao C L, Liang X J, et al. Impacts of urban land use on nitrate contamination in groundwater, Jilin City, Northeast China[J].Arabian Journal of Geosciences, 2016, 9(2): 105. DOI: 10.1007/s12517-015-2052-8.
[9] Liu Y, Wang J L. Reduction of nitrate by zero valent iron(ZVI)-based materials: A review[J]. Sci Total Environ, 2019, 671: 388-403. DOI: 10.1016/j.scitotenv.2019.03.317.
[10] Wang B Q, An B H, Liu Y, et al. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation[J]. Separation and Purification Technology, 2020, 248: 117061. DOI: 10.1016/j.seppur.2020.117061.
[11] Liu H, Liu X Y, Yang W W, et al. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction[J]. Journal of Materials Chemistry A, 2019, 7(5): 2022-2026. DOI: 10.1039/c8ta11172c.
[12] Jung B, Safan A, Duan Y, et al. Removal of arsenite by reductive precipitation in dithionite solution activated by UV light[J]. Journal of Environmental Sciences, 2018, 74: 168-176. DOI: 10.1016/j.jes.2018.02.023.
[13] Xiao Q, Wang T, Yu S L, et al. Influence of UV lamp, sulfur(IV)concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications[J]. Water Research, 2017, 111: 288-296. DOI: 10.1016/j.watres.2017.01.018.
[14] Bensalah N, Nicola R, Abdel-Wahab A. Nitrate removal from water using UV-M/S2O2-4 advanced reduction process[J]. International Journal of Environmental Science and Technology, 2013, 11(6): 1733-1742. DOI: 10.1007/s13762-013-0375-0.
[15] An B H, He H N, Duan B H, et al. Selective reduction of nitrite to nitrogen gas by CO2 anion radical from the activation of oxalate[J]. Chemosphere, 2021, 278: 130388. DOI: 10.1016/j.chemosphere.2021.130388.
[16] Tugaoen H O, Garcia-Segura S, Hristovski K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology[J]. Science of the Total Environment, 2017, 599-600: 1524-1551. DOI: 10.1016/j.scitotenv.2017.04.238.
[17] Gu X G, Lu S G, Fu X R, et al. Carbon dioxide radical anion-based UV/S2O2-8/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution[J]. Separation and Purification Technology, 2017, 172: 211-216. DOI: 10.1016/j.seppur.2016.08.019.
[18] Chen J L, Liu J Y, Zhou J S, et al. Reductive removal of nitrate by carbon dioxide radical with high product selectivity to form N2 in a UV/H2O2/HCOOH system[J]. Journal of Water Process Engineering, 2020, 33:101097. DOI: 10.1016/j.jwpe.2019.101097.
[19] Harbour J R, Hair M L. Spin trapping of the ·CO-2 radical in aqueous medium[J]. Canadian Journal of Chemistry, 2011, 57(10): 1150-1152. DOI: 10.1139/v79-188.
[20] Cheng S A, Fung W K, Chan K Y, et al. Optimizing electron spin resonance detection of hydroxyl radical in water[J]. Chemosphere, 2003, 52(10): 1797-1805. DOI: 10.1016/s0045-6535(03)00369-2.
[21] Han S K, Hwang T M, Yoon Y, et al. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance(EPR)[J].Chemosphere, 2011, 84(8): 1095-1101. DOI: 10.1016/j.chemosphere.2011.04.051.
[22] Augusto O, Bonini M G, Amanso A M, et al. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology[J]. Free Radical Biology and Medicine, 2002, 32(9): 841-859. DOI: 10.1016/S0891-5849(02)00786-4.
[23] Draganic Z D, Negronmendoza A, Sehested K, et al. Radiolysis of aqueous-solutions of ammonium bicarbonate over a large dose range[J]. Radiation Physics and Chemistry, 1991, 38(3): 317-321. DOI:10.1016/1359-0197(91)90100-G.