[1] Wu Y, DuBois C, Zheng A X, et al. Collaborative denoising auto-encoders for top-n recommender systems [C]// Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. Los Angeles, CA, USA, 2016: 153-162. DOI: 10.1145/2835776.2835837.
[2] Chen X, Xu H, Zhang Y, et al. Sequential recommendation with user memory networks [C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Los Angeles, CA, USA, 2018: 108-116. DOI:10.1145/3159652.3159668.
[3] Zhao X, Xia L, Tang J, et al. Deep reinforcement learning for search, recommendation, and online advertising:A survey [J]. ACM SIGWEB newsletter, 2019: 1-15. DOI: 10.1145/3320496.3320500.
[4] Wang H, Wu Q, Wang H. Factorization bandits for interactive recommendation [C]// Thirty-first AAAI Conference on Artificial Intelligence. San Francisco, CA, USA, 2017: 2695-2702. DOI: 10.5555/3298483.3298627.
[5] Zhao X, Zhang W, Wang J. Interactive collaborative filtering [C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. Los Angeles, CA, USA, 2013: 1411-1420. DOI: 10.1145/2505515.2505690.
[6] Wu Q, Wang H, Hong L, et al. Returning is believing: Optimizing long-term user engagement in recommender systems [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore, 2017: 1927-1936. DOI: 10.1145/3132847.3133025.
[7] Zou L, Xia L, Du P, et al. Pseudo Dyna-Q: A reinforcement learning framework for interactive recommendation [C]// Proceedings of the 13th International Conference on Web Search and Data Mining. Houston, TA, USA, 2020: 816-824. DOI: 10.1145/3336191.3371801.
[8] Chen H, Dai X, Cai H, et al. Large-scale interactive recommendation with tree-structured policy gradient [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA, 2019, 33(1): 3312-3320. DOI: 10.1609/aaai.v33i01.33013312.
[9] Zheng G, Zhang F, Zheng Z, et al. DRN: A deep reinforcement learning framework for news recommendation [C]// Proceedings of the 2018 World Wide Web Conference. Lyon, France, 2018: 167-176. DOI: 10.1145/3178876.3185994.
[10] Zou L, Xia L, Gu Y, et al. Neural interactive collaborative filtering [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi’an, China, 2020: 749-758. DOI:10.1145/3397271.3401181.
[11] Wang X, He X, Wang M, et al. Neural graph collaborative filtering [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France, 2019: 165-174. DOI: 10.1145/3331184.3331267.
[12] Ma C, Ma L, Zhang Y, et al. Memory augmented graph neural networks for sequential recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020, 34(4): 5045-5052. DOI: 10.1609/aaai.v34i04.5945.
[13] Wang H, Zhao M, Xie X, et al. Knowledge graph convolutional networks for recommender systems [C]// The World Wide Web Conference. Los Angeles, CA, USA, 2019: 3307-3313. DOI: 10.1145/3308558.3313417.
[14] Lei Y, Pei H, Yan H, et al. Reinforcement learning based recommendation with graph convolutional q-network [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi’an, China, 2020: 1757-1760. DOI: 10.1145/3397271.3401237.
[15] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533. DOI:10.1038/nature14236.