|Table of Contents|

[1] Xiong Pengwen, Zhou Xueting, Li Qian, et al. Path prediction of flexible needles based on Fokker-Planckequation and disjunctive Kriging model [J]. Journal of Southeast University (English Edition), 2022, 38 (2): 118-125. [doi:10.3969/j.issn.1003-7985.2022.02.003]
Copy

Path prediction of flexible needles based on Fokker-Planckequation and disjunctive Kriging model()
基于福克-普朗克方程与析取克里金模型的柔性针路径预测
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 2
Page:
118-125
Research Field:
Automation
Publishing date:
2022-06-20

Info

Title:
Path prediction of flexible needles based on Fokker-Planckequation and disjunctive Kriging model
基于福克-普朗克方程与析取克里金模型的柔性针路径预测
Author(s):
Xiong Pengwen1 2 Zhou Xueting1 Li Qian1 Song Aiguo2 Liu Peter Xiaoping3
1School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
2School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
3Department of Systems and Computer Engineering, Carleton University, Ottawa KIS5B6, Canada
熊鹏文1 2 周学婷1 黎倩1 宋爱国2 刘小平3
1南昌大学先进制造学院, 南昌330031; 2东南大学仪器科学与工程学院, 南京210096; 3Department of Systems and Computer Engineering, Carleton University, Ottawa KIS5B6, Canada
Keywords:
flexible needle puncture nonlinear Fokker-Planck equation disjunctive Kriging error analysis
柔性针穿刺 非线性 福克-普朗克方程 析取克里金 误差分析
PACS:
TP242.3
DOI:
10.3969/j.issn.1003-7985.2022.02.003
Abstract:
Path prediction of flexible needles based on the Fokker-Planck equation and disjunctive Kriging model is proposed to improve accuracy and consider the nonlinearity and anisotropy of soft tissues. The stochastic differential equation is developed into the Fokker-Planck equation with Gaussian noise, and the position and orientation probability density function of flexible needles are then optimized by the stochastic differential equation. The probability density function obtains the mean and covariance of flexible needle movement and helps plan puncture paths by combining with the probabilistic path algorithm. The weight coefficients of the ordinary Kriging are extended to nonlinear functions to optimize the planned puncture path, and the Hermite expansion is used to calculate nonlinear parameter values of the disjunctive Kriging optimization model. Finally, simulation experiments are performed. Detailed comparison results under different path planning maps show that the kinematics model can plan optimal puncture paths under clinical requirements with an error far less than 2 mm. It can effectively optimize the path prediction model and help improve the target rate of soft tissue puncture with flexible needles through data analysis and processing of the mean value and covariance parameters derived by the probability density and disjunctive Kriging algorithms.
为提高柔性针穿刺软组织的精度并充分考虑软组织的非线性和各向异性, 提出了一种基于福克-普朗克方程和析取克里金模型的柔性针路径预测方法.首先, 将随机微分方程演化为加入高斯随机噪声的福克-普朗克方程, 优化含有位置和方向的柔性针概率密度函数.其次, 由概率密度函数求得柔性针运动的均值和协方差, 结合概率路径算法规划穿刺路径.然后, 将普通克里金方法中的权重系数推广为非线性函数, 由埃尔米特展开式计算析取克里金优化模型的非线性参数值.最后, 对不同路径规划模拟图进行仿真试验分析.结果表明, 在非线性的软组织环境下, 该运动学模型能够在柔性针穿刺误差远小于2 mm的临床要求下规划出最优穿刺路径.通过对概率密度算法和析取克里金算法推导的均值、协方差参数的数据分析处理可有效地优化路径预测模型, 有助于提高柔性针穿刺软组织的命中靶向率.

References:

[1] Zheng M H, Ma J J, Wu C. Twenty year progression and future directions of minimally invasive surgery [J]. Chinese Journal of Practical Surgery, 2020, 40: 23-26. DOI:10.19538/j.cjps.issn1005-2208.2020.01.03. (in Chinese)
[2] Yue L, Kong F T, Liu B, et al. Development of new cable-driven minimally invasive surgical robot[J]. International Journal of Automation and Control, 2019, 13: 324-346. DOI: 10.1504/IJAAC.2019.098583.
[3] Ni Z Q, Wang T M, Liu D.Survey on medical robotics[J]. Journal of Mechanical Engineering, 2015, 51: 45-52. DOI:10.3901/JME.2015.13.045. (in Chinese)
[4] Park W, Wang Y, Chirikjian S. Path planning for flexible needles using second order error propagation[J]. Springer Tracts in Advanced Robotics, 2010, 57: 583-598. DOI: 10.1007/978-3-642-00312-7_36.
[5] Park W, Wang Y, Chirikjian S. The path-of-probability algorithm for steering and feedback control of flexible needles[J]. International Journal of Robotics Research, 2010, 29: 813-830. DOI: 10.1177/0278364909357228.
[6] Alterovitz R, Lim A, Goldberg K, et al. Steering flexible needles under Markov motion uncertainty [C]// 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, CA, US, 2005:120-125. DOI: 10.1109/IROS.2005.1544969.
[7] Zhao Y J, Zhang Y D, Shao J P. Kinematic modeling and experimental study of flexible needle [J]. Robot, 2010, 32: 666-673. DOI:10.3724/SP.J.1218.2010.00666. (in Chinese)
[8] Huo B Y, Zhao X G, Han J D, et al. Puncture path planning for bevel-tip flexible needle based on multi-objective particle swarm optimization algorithm[J]. Robotics, 2015, 37:385-394. DOI:10.13973/j.cnki.robot.2015.0385. (in Chinese)
[9] Arora S, Scherer S. Randomized algorithm for informative path planning with budget constraints [C]//2017 IEEE International Conference on Robotics and Automation. Singapore, 2017:4997-5004. DOI: 10.1109/ICRA.2017.7989582.
[10] Gao D D, Li Q, Lei Y, et al. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. Journal of Zhejiang University(Engineering Science), 2017, 51: 706-713. DOI:10. 3785/ j.issn.1008-973X.2017.04.010. (in Chinese)
[11] Papachristos C, Khattak S, Alexis K. Uncertainty-aware receding horizon exploration and mapping using aerial robots [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore, 2017:4568-4575. DOI: 10.1109/ICRA.2017.7989531.
[12] Ma X L, Zhou K R. Application of disjunctive Kriging technology in reservoir description [J]. Journal of China University of Petroleum(Edition of Natural Science). 1992, 16: 116-122.(in Chinese)
[13] Dang T, Mascarich F, Khattak S. Graph-based path planning for autonomous robotic exploration in subterranean environments[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao, China, 2019:3105-3112. DOI: 10.1109/IROS40897.2019.8968151.
[14] Webster J, Robert J, Kim J S, et al. Nonholonomic modeling of needle steering.[J]. International Journal of Robotics Research, 2006, 25: 509-525. DOI: 10.1177/0278364906065388.
[15] Bircher A, Alexis K, Burri M. Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics[C]// 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, US, 2015:6423-6430. DOI: 10.1109/ICRA.2015.7140101.

Memo

Memo:
Biographies: Xiong Pengwen(1987—), male, doctor; Li Qian(Corresponding author), female, doctor, lector, qianli@ncu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 61903175, 62163024, 62163026), the Academic and Technical Leaders Foundation of Major Disciplines of Jiangxi Province under Grant(No.20204BCJ23006).
Citation: Xiong Pengwen, Zhou Xueting, Li Qian, et al.Path prediction of flexible needles based on Fokker-Planck equation and disjunctive Kriging model[J].Journal of Southeast University(English Edition), 2022, 38(2):118-125.DOI:10.3969/j.issn.1003-7985.2022.02.003.
Last Update: 2022-06-20