|Table of Contents|

[1] Xu Shaoyong, Zhang Jianrun, Nguyen Van Liem, Applying machine learning for cars’ semi-activeair suspension under soft and rigid roads [J]. Journal of Southeast University (English Edition), 2022, 38 (3): 300-308. [doi:10.3969/j.issn.1003-7985.2022.03.012]
Copy

Applying machine learning for cars’ semi-activeair suspension under soft and rigid roads()
汽车半主动空气悬架在软与硬路面下机器学习中的应用
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 3
Page:
300-308
Research Field:
Traffic and Transportation Engineering
Publishing date:
2022-09-20

Info

Title:
Applying machine learning for cars’ semi-activeair suspension under soft and rigid roads
汽车半主动空气悬架在软与硬路面下机器学习中的应用
Author(s):
Xu Shaoyong1 Zhang Jianrun2 Nguyen Van Liem1 2
1 School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
1 Hubei Key Laboratory of Intelligent Conveying Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
徐绍勇1 张建润2 阮文廉1 2
1 湖北理工学院机电工程学院, 黄石 435003; 1 湖北理工学院智能输送技术与装备湖北重点实验室, 黄石 435003; 2 东南大学机械工程学院, 南京 211189
Keywords:
semi-active air suspension ride quality machine learning fuzzy control genetic algorithm
半主动空气悬架 平顺性 机器学习 模糊控制 遗传算法
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2022.03.012
Abstract:
To improve the ride quality and enhance the control efficiency of cars’ semi-active air suspensions(SASs)under various surfaces of soft and rigid roads, a machine learning(ML)method is proposed based on the optimized rules of the fuzzy control(FC)method and car dynamic model for application in SASs. The root-mean-square(RMS)acceleration of the driver’s seat and car’s pitch angle are chosen as the objective functions. The results indicate that a soft surface obviously influences a car’s ride quality, particularly when it is traveling at a high-velocity range of over 72 km/h. Using the ML method, the car’s ride quality is improved as compared to those of FC and without control under different simulation conditions. In particular, compared with those cars without control, the RMS acceleration of the driver’s seat and car’s pitch angle using the ML method are respectively reduced by 30.20% and 19.95% on the soft road and 34.36% and 21.66% on the rigid road. In addition, to optimize the ML efficiency, its learning data need to be updated under all various operating conditions of cars.
为提高车辆半主动空气悬架在不同路面下的平顺性和控制性能, 以驾驶员座椅和车辆俯仰角的加权加速度均方根值为控制目标, 提出了一种基于模糊最优控制和车辆实际模型的机器学习方法.研究结果表明:车辆在72 km/h以上高速行驶时, 软路面对车辆的平顺性有明显影响.基于机器学习, 软路面工况下采用模糊控制的座椅和车辆俯仰角的加权加速度均方根值分别降低了30.20% 和19.95%, 而硬路面工况下无控制策略的座椅加速度和俯仰角加速度的加权加速度均方根值分别降低了34.36%和21.66%.这说明不同仿真条件下, 该方法均能提高车辆的行驶平顺性.此外, 为提高机器学习的效率, 需要对其学习数据进行不断更新, 以适应车辆的各种运行工况.

References:

[1] Wu M, Yin H, Li X, et al. A new dynamic stiffness model with hysteresis of air springs based on thermodynamics [J]. Journal of Sound and Vibration, 2021, 521: 116693. DOI: 10.1016/j.jsv.2021.116693.
[2] Yang L, Wang R C, Ding R K, et al. Investigation on the dynamic performance of a new semi-active hydro-pneumatic inerter-based suspension system with MPC control strategy[J].Mechanical Systems and Signal Processing, 2021, 154: 107569. DOI:10.1016/j.ymssp.2020.107569.
[3] Nguyen V, Jiao R Q, Zhang J R. Control performance of damping and air spring of heavy truck air suspension system with optimal fuzzy control[J].SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2020, 4(2): 10-4. DOI:10.4271/10-04-02-0013.
[4] Fergani S, Sename O, Dugard L. A LPV/H∞ global chassis controller for performances improvement involving braking, suspension and steering systems[J]. IFAC Proceedings Volumes, 2012, 45(13): 363-368. DOI:10.3182/20120620-3-DK-2025.00169.
[5] Haemers M, Derammelaere S, Ionescu C M, et al. Proportional-integral state-feedback controller optimization for a full-car active suspension setup using a genetic algorithm[J].IFAC—PapersOnLine, 2018, 51(4): 1-6. DOI:10.1016/j.ifacol.2018.06.004.
[6] Yan G, Fang M X, Xu J. Analysis and experiment of time-delayed optimal control for vehicle suspension system[J].Journal of Sound and Vibration, 2019, 446: 144-158. DOI:10.1016/j.jsv.2019.01.015.
[7] International Organization for Standardization. Mechanical vibration-road surface profiles-reporting of measured data: ISO 8068[S]. Geneve, Switzerland: International Organization for Standardization, 1995.
[8] Nguyen V, Zhang J, Le V, et al. Performance analysis of air suspension system of heavy truck with semi-active fuzzy control [J]. Journal of Southeast University(English Edition), 2017, 33(2): 159-165.DOI:10.3969/j.issn. 1003-7985.2017.02.006.
[9] Nguyen V, Zhang J, Jiao R, et al. Effect of the off-road terrains on the ride quality of construction vehicles [J]. Journal of Southeast University(English Edition), 2019, 35(2): 191-197. DOI:10.3969/j.issn.1003-7985.2019.02.008.
[10] Mitschke M. Dynamik der Kraftfahrzeuge[M]. Berlin: Springer Berlin Heidelberg, 1972: 301-347.
[11] El-Sayegh Z, El-Gindy M, Johansson I, et al. Development and validation of off-road tire-gravelly soil interaction using advanced computational techniques[J].Journal of Terramechanics, 2020, 91: 45-51. DOI:10.1016/j.jterra.2020.05.004.
[12] Yuan H, Nguyen V, Zhou H X. Research on semi-active air suspensions of heavy trucks based on a combination of machine learning and optimal fuzzy control[J].SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(2): 10-5. DOI:10.4271/10-05-02-0011.
[13] Ye Y, Huang P, Zhang Y. Deep learning-based fault diagnostic network of high-speed train secondary suspension systems for immunity to track irregularities and wheel wear[J]. Railway Engineering Science, 2022, 30:96-116. DOI:10.1007/s40534-021-00252-z.
[14] Hua W L, Nguyen V, Zhou H X. Experimental investigation and vibration control of semi-active hydraulic-pneumatic mounts for vibratory roller cab[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(4): 10-5. DOI:10.4271/10-05-04-0028.
[15] Shi X M, Cai C S. Simulation of dynamic effects of vehicles on pavement using a 3D interaction model[J]. Journal of Transportation Engineering, 2009, 135(10): 736-744. DOI:10.1061/(asce)te.1943-5436.0000045.
[16] International Organization for Standardization. Mechanical vibration and shock—Evaluation of human exposure to whole body wibration—Part 1: General requirements: ISO 2631-1 [S]. Geneve, Switzerland: International Organization for Standardization, 1997.
[17] Wong Y J. Theory of ground vehicles[M]. New York, NY, USA: John Wiley & Sons, 2001: 145-198.

Memo

Memo:
Biographies: Xu Shaoyong(1981—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation items: The National Key Research and Development Plan(No. 2019YFB2006402), Talent Introduction Fund Project of Hubei Polytechnic University(No. 17xjz01R), Key Scientific Research Project of Hubei Polytechnic University(No. 22xjz02A).
Citation: Xu Shaoyong, Zhang Jianrun, Nguyen Van Liem. Applying machine learning for cars’ semi-active air suspension under soft and rigid roads[J].Journal of Southeast University(English Edition), 2022, 38(3):300-308.DOI:10.3969/j.issn.1003-7985.2022.03.012.
Last Update: 2022-09-20