[1] Connor J, Champion B, Joordens M A. Current algorithms, communication methods and designs for underwater swarm robotics: A review[J]. IEEE Sensors Journal, 2020, 21(1): 153-169. DOI:10.1109/JSEN.2020.3013265.
[2] Jalal F, Nasir F. Underwater navigation, localization and path planning for autonomous vehicles: A review[C]//International Bhurban Conference on Applied Sciences and Technologies. Islamabad, Pakistan, 2021: 817-828. DOI:10.1109/IBCAST51254.2021.9393315.
[3] Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145-160. DOI:10.1016/j.oceaneng.2019.04.011.
[4] González-García J, Gómez-Espinosa A, Cuan-Urquizo E, et al. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions[J]. Applied Sciences, 2020, 10(4): 1256. DOI:10.3390/app10041256.
[5] Wu C, Wu Q, Ma F, et al. A novel positioning approach for an intelligent vessel based on an improved simultaneous localization and mapping algorithm and marine radar[J].Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(3): 779-792. DOI:10.1177/1475090218784449.
[6] Franchi M, Ridolfi A, Allotta B. Underwater navigation with 2D forward looking SONAR: An adaptive unscented Kalman filter-based strategy for AUVs[J]. Journal of Field Robotics, 2021, 38(3): 355-385. DOI:10.1002/rob.21991.
[7] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics. Autonomous robot vehicles[M]. New York: Springer-Verlag, 1990: 167-193.
[8] Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257. DOI:10.1109/70.938382.
[9] Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building(SLAM)problem[J].IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241. DOI:10.1109/70.938381.
[10] Bailey T, Nieto J, Guivant J, et al. Consistency of the EKF-SLAM algorithm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 3562-3568. DOI:10.1109/IROS.2006.281644.
[11] Carpenter R N. Concurrent mapping and localization with FLS[J].Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles(Cat No 98CH36290). Cambridge, USA, 1998: 133-148. DOI:10.1109/AUV.1998.744449.
[12] Ribas D, Ridao P, Tardós J D, et al. Underwater SLAM in man-made structured environments[J]. Journal of Field Robotics, 2008, 25(11/12): 898-921. DOI:10.1002/rob.20249.
[13] Ribas D, Ridao P, Domingo Tardos J, et al. Underwater SLAM in a marina environment[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: 1455-1460. DOI:10.1109/IROS.2007.4399222.
[14] Zhang S J, He B, Ying L L, et al. Autonomous navigation with constrained consistency for C-ranger[J]. International Journal of Advanced Robotic Systems, 2014, 11(6): 84. DOI:10.5772/58582.
[15] Ye H, Zhou C. A new EKF SLAM algorithm of lidar-based AGV fused with bearing information[J]. TechConnect Briefs, 2018, 4: 32-39.
[16] Pei F J, Zhu M J, Wu X P. A decorrelated distributed EKF-SLAM system for the autonomous navigation of mobile robots[J].Journal of Intelligent & Robotic Systems, 2020, 98(3/4): 819-829. DOI:10.1007/s10846-019-01069-z.
[17] Zhang X, He B, Gao S, et al. Multiple model AUV navigation methodology with adaptivity and robustness[J].Ocean Engineering, 2022, 254: 111258. DOI:10.1016/j.oceaneng.2022.111258.
[18] Fraser C T, Ulrich S. Adaptive extended Kalman filtering strategies for spacecraft formation relative navigation[J].Acta Astronautica, 2021, 178: 700-721. DOI:10.1016/j.actaastro.2020.10.016.
[19] Huang H Q, Tang J C, Liu C, et al. Variational Bayesian-based filter for inaccurate input in underwater navigation[J].IEEE Transactions on Vehicular Technology, 2021, 70(9): 8441-8452. DOI:10.1109/TVT.2021.3099126.
[20] Tian Y Z, Suwoyo H, Wang W B, et al. An AEKF-SLAM algorithm with recursive noise statistic based on MLE and EM[J]. Journal of Intelligent & Robotic Systems, 2020, 97(2): 339-355. DOI:10.1007/s10846-019-01044-8.
[21] Sarkka S, Nummenmaa A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. DOI:10.1109/TAC.2008.2008348.
[22] Chang G B, Chen C, Zhang Q Z, et al. Variational Bayesian adaptation of process noise covariance matrix in Kalman filtering[J].Journal of the Franklin Institute, 2021, 358(7): 3980-3993. DOI:10.1016/j.jfranklin.2021.02.037.
[23] Shan C H, Zhou W D, Yang Y F, et al. Multi-fading factor and updated monitoring strategy adaptive Kalman filter-based variational Bayesian[J].Sensors(Basel, Switzerland), 2020, 21(1): 198. DOI:10.3390/s21010198.
[24] Lin H S, Hu C. Variational inference based distributed noise adaptive Bayesian filter[J].Signal Processing, 2021, 178: 107775. DOI:10.1016/j.sigpro.2020.107775.
[25] Lin H S, Hu C. Variational inference based distributed noise adaptive Bayesian filter[J].Signal Processing, 2021, 178: 107775. DOI:10.1016/j.sigpro.2020.107775.
[26] Xu G, Huang Y L, Gao Z X, et al. A computationally efficient variational adaptive Kalman filter for transfer alignment[J].IEEE Sensors Journal, 2020, 20(22): 13682-13693. DOI:10.1109/JSEN.2020.3004621.
[27] Sun C J, Zhang Y G, Wang G Q, et al. A new variational Bayesian adaptive extended Kalman filter for cooperative navigation[J].Sensors(Basel, Switzerland), 2018, 18(8): 2538. DOI:10.3390/s18082538.
[28] Huber P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35(1):73-101.
[29] Chang L B, Hu B Q, Chang G B, et al. Robust derivative-free Kalman filter based on Huber’s M-estimation methodology[J].Journal of Process Control, 2013, 23(10): 1555-1561. DOI:10.1016/j.jprocont.2013.05.004.
[30] Chang L B, Hu B Q, Chang G B, et al. Multiple outliers suppression derivative-free filter based on unscented transformation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1902-1906. DOI:10.2514/1.57576.
[31] Chang G B, Liu M. M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models[J].Nonlinear Dynamics, 2015, 80(3): 1431-1449. DOI:10.1007/s11071-015-1953-0.
[32] Du H Y. Research for the application of simultaneous localization and mapping algorithm in autonomous underwater vehicle[D]. Harbin: Harbin Engineering University, 2012.(in Chinese)
[33] Ding H M. Research on the SLAM algorithm to the application of underwater vehicles based on EKF[D]. Harbin: Harbin Engineering University, 2014.(in Chinese)
[34] Yan G M, Weng J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi’an: Northwest Polytechnical University Press, 2019: 126-128.
[35] Ullah I, Su X, Zhang X W, et al. Simultaneous localization and mapping based on Kalman filter and extended Kalman filter[J]. Wireless Communications and Mobile Computing, 2020, 2020: 2138643. DOI:10.1155/2020/2138643.
[36] Ahmad H, Othman N A, Saari M M, et al. Data association analysis in simultaneous localization and mapping problem [J]. International Journal of Integrated Engineering, 2019, 11(4):112-118. DOI:10.30880/ijie.2019.11.04.012.
[37] Zhang T, Wu K Z, Song J W, et al. Convergence and consistency analysis for a 3-D invariant-EKF SLAM[J].IEEE Robotics and Automation Letters, 2017, 2(2): 733-740. DOI:10.1109/LRA.2017.2651376.