[1] Adler T, Ben-Akiva M. A theoretical and empirical model of trip chaining behavior[J]. Transportation Research Part B: Methodological, 1979, 13(3): 243-257. DOI:10.1016/0191-2615(79)90016-X.
[2] Kondo K, Kitamura R. Time-space constraints and the formation of trip chains[J].Regional Science and Urban Economics, 1987, 17(1): 49-65. DOI:10.1016/0166-0462(87)90068-8.
[3] Tan J M, Xu R H. Analysis of multi-factors influencing trip chain buildup [J]. Journal of Tongji University(Natural Science), 2009, 37(10): 1340-1344. DOI:10. 3969/j. issn. 0253-374x. 2009. 10. 012. (in Chinese)
[4] Qi C, Zhu Z J, Guo X C, et al. Examining interrelationships between tourist travel mode and trip chain choices using the nested logit model[J]. Sustainability, 2020, 12(18): 7535. DOI:10.3390/su12187535.
[5] Wang C Y, Hu S R, Chu C P. A combined activity nodes choice and trip-chain based user equilibrium traffic assignment model[J]. Transportation Research Procedia, 2017, 25: 2461-2472. DOI:10.1016/j.trpro.2017.05.271.
[6] Wang J C, Chen S K, He Y Q, et al. Simulation of transfer organization of urban public transportation hubs[J].Journal of Transportation Systems Engineering and Information Technology, 2006, 6(6): 96-102. DOI:10.1016/S1570-6672(07)60004-X.
[7] Wang Z W, Chen T, Song M Q. Coordinated optimization of operation routes and schedules for responsive feeder transit under simultaneous pick-up and delivery mode[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 139-149. DOI:10.19818/j.cnki.1671-1637.2019.05.014. (in Chinese)
[8] Zhang X J. The study on the transfer between urban rail transportation and conventional public transit [D]. Chengdu: Southwest Jiaotong University, 2004.(in Chinese)
[9] Xiong J, Guan W, Sun Y X. Metro transfer passenger forecasting based on Kalman filter[J]. Journal of Beijing Jiaotong University, 2013, 37(3): 112-116, 121. DOI:10. 3969/j. issn. 1673-0291. 2013. 03. 021. (in Chinese)
[10] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J].Neurocomputing, 2003, 50: 159-175. DOI:10.1016/S0925-2312(01)00702-0.
[11] Liu G J, Yin Z Z, Jia Y J, et al. Passenger flow estimation based on convolutional neural network in public transportation system[J]. Knowledge-Based Systems, 2017, 123: 102-115. DOI:10.1016/j.knosys.2017.02.016.
[12] Hu Y R, Wu C, Liu H J. Prediction of passenger flow on the highway based on the least square support vector machine[J]. Transport, 2011, 26(2): 197-203.
[13] Zhao J D, Gao Y, Bai Z M, et al. Traffic speed prediction under non-recurrent congestion: Based on LSTM method and BeiDou navigation satellite system data[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(2): 70-81. DOI:10.1109/MITS.2019.2903431.
[14] Zhang X H. Short-term traffic flow interval forecasting based on grey system theory[D]. Zhenjiang: Jiangsu University, 2011.(in Chinese)
[15] Zhu S L, Cheng L, Chu Z M. Bayesian network model for traffic flow estimation using prior link flows[J].Journal of Southeast University(English Edition), 2013, 29(3): 322-327. DOI:10.3969/j.issn.1003-7985.2013.03.017.
[16] Tong L, Guan Z. Fuzzy granulation prediction of traffic flow based on improved whale optimization support vector machine[J]. Journal of Computer Applications, 2021(10): 2919-2927. DOI:10. 11772/j. issn. 1001-9081. 2020122048. (in Chinese)
[17] Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191. DOI:10.1016/j.ijforecast.2019.07.001.
[18] Yan L C, Li Y, Song H, et al. Web traffic prediction based on prophet-DeepAR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022(3): 172-184. DOI:10. 16088/j. issn. 1001-6600. 2021071505. (in Chinese)
[19] Zhu G, Li W, Du S G, et al. Time series prediction based on deep learning model DeepAR and application examples[J]. E-Business Journal, 2020, 39(7): 83-86. DOI:10. 14011/j. cnki. dzsw. 2020. 07. 039. (in Chinese)
[20] Li H, Wang Z J, Li Z, et al. Prediction of remaining useful life of aero-engine based on stacked Autoencoder and DeepAR [J]. Journal of Propulsion Technology, 2022: 1-10.
[21] Wang Z J, Zhan Z H, Kwong S, et al. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1175-1188. DOI:10.1109/TCYB.2020.2977956.
[22] Seaborn C W. Application of Smart Card fare payment data to bus network planning in London, UK [D]. Massachusetts: Massachusetts Institute of Technology, 2008.
[23] Wang Y Y. Research on methods of extraction commuting trip characteristic based on public transportation multi-source data [D]. Beijing: Beijing University of Technology, 2014.(in Chinese)
[24] D6;zakta瘙塂 H, K131;rkavak N, Alpay A N. A paradox of the average waiting time for the case of a single bottleneck on the commuters’ route[J]. Modelling and Simulation in Engineering, 2021, 2021: 1-9. DOI:10.1155/2021/2315987.
[25] Yan W P. Evaluation of public transportation index in metropolis[D]. Beijing: Beijing University of Technology, 2012.(in Chinese)
[26] Zhao Y Y, Xia L, Jiang X G. Short-term subway passenger flow prediction model based on empirical modal decomposition and long-term memory neural networks [J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.