[1] Wang Z Y, Zi B, Wang D M, et al. External force self-sensing based on cable-tension disturbance observer for surgical robot end-effector[J]. IEEE Sensors Journal, 2019, 19(13): 5274-5284. DOI: 10.1109/JSEN.2019.2903776.
[2] Yu X, Liu G M, Wang Z Y, et al. Full-closed loop tracking control based on multi-factor coupling compensations using artificial neural network for a cable-pulley-driven surgical robotic manipulator[C]//Proc USCToMM Symposium on Mechanical Systems and Robotics. Rapid City, SD, USA, 2022: 43-53. DOI: 10.1007/978-3-030-99826-4_5.
[3] Wang W, Li J M, Wang S X, et al. System design and animal experiment study of a novel minimally invasive surgical robot[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12(1): 73-84. DOI: 10.1002/rcs.1658.
[4] Chen B, Zi B, Wang Z Y, et al. Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art[J]. Mechanism and Machine Theory, 2019, 134: 499-511. DOI: 10.1016/j.mechmachtheory.2019.01.016.
[5] Chen Q, Zi B, Sun Z, et al. Design and development of a new cable-driven parallel robot for waist rehabilitation[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1497-1507. DOI: 10.1109/TMECH.2019.2917294.
[6] Xie F, Shang W W, Zhang B, et al. High-precision trajectory tracking control of cable-driven parallel robots using robust synchronization[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2488-2499. DOI: 10.1109/TII.2020.3004167.
[7] Rasheed T, Long P, Roos A S, et al. Optimization based trajectory planning of mobile cable-driven parallel robots[C]//2019 Proc IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Macau, China, 2019: 6788-6793. DOI: 10.1109/IROS40897.2019.8968133.
[8] Kuan J Y, Pasch K A, Herr H M. A high-performance cable-drive module for the development of wearable devices[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1238-1248. DOI: 10.1109/TMECH.2018.2822764.
[9] Min S, Yi S. Development of cable-driven anthropomorphic robot hand[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1176-1183. DOI: 10.1109/LRA.2021.3056375.
[10] Wang Y Y, Yan F, Zhu K W, et al. A new practical robust control of cable-driven manipulators using time-delay estimation[J]. International Journal of Robust and Nonlinear Control, 2019, 29(11): 3405-3425. DOI: 10.1002/rnc.4566.
[11] Zhang J, Kan Z Y, Li Y, et al. Novel design of a cable-driven continuum robot with multiple motion patterns[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6163-6170. DOI: 10.1109/LRA.2022.3166547.
[12] Korayem M H, Yousefzadeh M, Kian S. Precise end-effector pose estimation in spatial cable-driven parallel robots with elastic cables using a data fusion method[J]. Measurement, 2018, 130: 177-190. DOI: 10.1016/j.measurement.2018.08.009.
[13] Peng H N, Yang X J, Su Y H, et al. Real-time data driven precision estimator for RAVEN-II surgical robot end effector position[C]// 2020 Proc IEEE International Conference on Robotics and Automation(ICRA). Paris, France, 2020: 350-356. DOI: 10.1109/ICRA40945.2020.9196915.
[14] Lertpiriyasuwat V, Berg M C. Adaptive real-time estimation of end-effector position and orientation using precise measurements of end-effector position[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 304-319. DOI: 10.1109/TMECH.2006.876515.
[15] Liu X, Zhao F, Ge S S, et al. End-effector force estimation for flexible-joint robots with global friction approximation using neural networks[J].IEEE Transactions on Industrial Informatics, 2019, 15(3): 1730-1741. DOI: 10.1109/TII.2018.2876724.
[16] Xue R F, Du Z J, Yan Z Y, et al. An estimation method of grasping force for laparoscope surgical robot based on the model of a cable-pulley system[J]. Mechanism and Machine Theory, 2019, 134: 440-454. DOI: 10.1016/j.mechmachtheory.2018.12.032.
[17] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-11)[2022-09-01]. https://arxiv.org/1412.3555.pdf.
[18] Yin W, Kann K, Yu M, et al. Comparative study of CNN and RNN for natural language processing[EB/OL].(2017-02-07)[2022-09-01]. https://arxiv.org/1702.01923.pdf.
[19] Shewalkar A, Nyavanandi D, Ludwig S A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9(4): 235-245. DOI: 10.2478/jaiscr-2019-0006.
[20] Basiri M E, Nemati S, Abdar M, et al. ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis[J]. Future Generation Computer Systems, 2021, 115: 279-294. DOI: 10.1016/j.future.2020.08.005.
[21] Fernando T, Ghaemmaghami H, Denman S, et al. Heart sound segmentation using bidirectional LSTMs with attention[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(6): 1601-1609. DOI: 10.1109/JBHI.2019.2949516.
[22] Zhou L Y, Fan X J, Tjahjadi T, et al. Discriminative attention-augmented feature learning for facial expression recognition in the wild[J]. Neural Computing and Applications, 2022, 34(2): 925-936. DOI: 10.1007/s00521-021-06045-z.
[23] Wang Z Y, Zi B, Wang D M, et al. Design, modeling and analysis of a novel backdrivable cable-driven series elastic actuator[C]//2019 Proc IEEE International Conference on Nanotechnology(IEEE-NANO). Macau, China, 2019: 179-183. DOI: 10.1109/NANO46743.2019.8993930.
[24] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proc International Conference on Neural Information Processing Systems. Long Beach, CA, USA, 2017:30. DOI: 10.5555/3295222.3295349.
[25] Liu X, You J L, Wu Y L, et al. Attention-based bidirectional GRU networks for efficient HTTPS traffic classification[J]. Information Sciences, 2020, 541: 297-315. DOI: 10.1016/j.ins.2020.05.035.
[26] Xu X, Deng J, Cummins N, et al. Autonomous emotion learning in speech: A view of zero-shot speech emotion recognition[C]//Proc Annual Conference of the International Speech Communication Association(INTERSPEECH). Graz, Austria, 2019: 949-953. DOI: 10.21437/Interspeech.2019-2406.
[27] Dong X, Williamson D S. An attention enhanced multi-task model for objective speech assessment in real-world environments[C]//Proc IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Virtual Barcelona, Spain, 2020: 911-915. DOI: 10.1109/ICASSP40776.2020.9053366.
[28] Xu X, Deng J, Zhang Z, et al. Rethinking auditory affective descriptors through zero-shot emotion recognition in speech[J]. IEEE Transactions on Computational Social Systems, 2022, 9(5): 1530 - 1541. DOI: 10.1109/TCSS.2021.3130401.