[1] Tu Y M, Lu S L, Wang C, Damage identification of steel truss bridges based on deep belief network [J]. Journal of Southeast University(English Edition), 2022, 38(4):392-400. DOI: 10.3969/j. issn. 1003-7985.2022.04.008.
[2] Jiao H C, Yan Y D, Jin H. Evaluation of mechanical properties of cast steel nodes based on GTN damage model[J]. Journal of Southeast University(English Edition), 2021, 37(4):401-407. DOI: 10.3969/j. issn. 1003-7985.2021.04.009.
[3] Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies[J].The Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49-57. DOI:10.1243/03093247V142049.
[4] Wahab M M A, Roeck G D. Damage detection in bridges using modal curvatures:Application to a real damage scenario[J].Journal of Sound & Vibration, 1999, 226(2): 217-235. DOI:10.1006/jsvi.1999.2295.
[5] Droz C, Boukadia R, Desmet W.A multi-scale model order reduction scheme for transient modelling of periodic structures[J]. Journal of Sound and Vibration, 2021, 510: 116312. DOI:10.1016/j.jsv.2021.116312.
[6] Duong H N, Magd A W. Damage detection in slab structures based on two-dimensional curvature[J]. Advances in Engineering Software, 2023, 176: 103371. DOI:10.1016/j.advengsoft.2022.103371.
[7] Gu H S, Itoh Y. Aging behaviors of natural rubber in isolation bearings[J].Advanced Materials Research, 2010, 163: 3343-3347. DOI: 10.4028/www.scientific.net/AMR.163-167.3343.
[8] Ying Z G, Ni Y Q, Dynamic characteristics of infinite-length and finite-length rods with high-wave-number periodic parameters[J].Journal of Sound & Vibration, 2017, 24(11): 2344-2358. DOI: 10.1177/1077546316687676.
[9] Hussein M I, Leamy M J, Ruzzene M, et al. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802. DOI:10.1115/1.4026911.
[10] Wei J, Petyt M. A method of analyzing finite periodic structures, part 2: Comparison with infinite periodic structure theory[J].Journal of Sound & Vibration, 1997, 202(4):571-583. DOI: 10.1006/JSVI.1996.0888.
[11] Michaels T C T, Kusters R, Dear A J, et al.Geometric localization in supported elastic struts[J]. Proceedings of the Royal Society A, 2019, 475(2229): 20190370. DOI:10.1098/rspa.2019.0370.
[12] Bendiksen O O. Localization phenomena in structural dynamics[J].Chaos Solitons Fractals, 2000, 11(10):1621-1660. DOI:10.1016/S0960-0779(00)00013-8.
[13] Wierzbicki E, Wo’/zniak C. On the dynamics of combined plane periodic structures[J].Archive of Applied Mechanics, 2000, 70(6):387-398. DOI:10.1007/S004199900070.
[14] Michalak B. Vibrations of plates with initial geometrical periodical imperfections interacting with a periodic elastic foundation[J].Archive of Applied Mechanics, 2000, 70(7):508-518. DOI:10.1007/S004190000081.
[15] Romeo F, Luongo A. Vibration reduction in piecewise bi-coupled periodic structures[J].Journal of Sound & Vibration, 2003, 268(3):601-615. DOI:10.1016/S0022-460X(03)00375-4.
[16] Hull A J. Dynamic response of an elastic plate containing periodic masses[J].Journal of Sound & Vibration, 2008, 310(1/2):1-20. DOI:10.1016/j.jsv.2007.03.085.
[17] Manktelow K L, Leamy M J, Ruzzene M. Analysis and experimental estimation of nonlinear dispersion in a periodic string[J].Journal of Vibration and Acoustics: Transactions of the ASME. 2014, 136(3):031016.DOI:10.1115/1.4027137/380275.
[18] Hvatov A, Sorokin S. Free vibrations of finite periodic structures in pass- and stop-bands of the counterpart infinite waveguides[J].Journal of Sound & Vibration, 2015, 347:200-217. DOI:10.1016/j.jsv.2015.03.003.
[19] Junyi L, Balint D S. An inverse method to determine the dispersion curves of periodic structures based on wave superposition[J].Journal of Sound & Vibration, 2015, 350:41-72. DOI:10.1016/j.jsv.2015.03.041.
[20] Wu Z J, Li F M. Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices[J]. Journal of Vibration and Control, 2014, 22(3):710-72. DOI:10.1177/1077546314531805.
[21] Domadiya P G, Manconi E, Vanali M, et al. Numerical and experimental investigation of stopbands in finite and infinite periodic one-dimensional structures[J]. Journal of Vibration and Control, 2014, 22(4):920-931. DOI:10.1177/1077546314537863.
[22] Chen J S, Tsai S M. Sandwich structures with periodic assemblies on elastic foundation under moving loads[J].Journal of Vibration and Control, 2014, 22(10):2519-2529. DOI:10.1177/1077546314548470.
[23] Ying Z G, Ni Y Q. A double expansion method for the frequency response of finite-length beams with periodic parameters[J].Journal of Sound & Vibration, 2017, 391:180-193. DOI:10.1016/J.JSV.2016.12.011.
[24] Ying Z G, Ni Y Q. A response-adjustable sandwich beam with harmonic distribution parameters under stochastic excitations[J]. International Journal of Structural Stability & Dynamics, 2017, 17:1750075.DOI:10.1142/S0219455417500754.
[25] Heckl M A. Investigations on the vibrations of grillages and other simple beam structures[J].Journal of the acoustical Society of America, 1964, 36(7):743-748.DOI:10.1121/1.1919206.
[26] Mead D J. Free wave propagation in periodic supported, infinite beams[J].Journal of Sound & Vibration, 1970, 11:181-197. DOI:10.1016/S0022-460X(70)80062-1.
[27] Mead D J. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis[J].Journal of Sound & Vibration, 2009, 319(1/2):282-304. DOI:10.1016/J.JSV.2008.05.026.
[28] Mead D J. Wave propagation in continuous periodic structures: Research contributions from southampton[J].Journal of Sound & Vibration, 1996, 190:495-524. DOI:10.1006/JSVI.1996.0076.
[29] Mead D J, Parthan S. Free wave propagation in two-dimensional periodic plates[J].Journal of Sound & Vibration, 1979, 64:325-348. DOI:10.1016/0022-460X(79)90581-9.
[30] Mead D J, Markuš S. Coupled flexural-longitudinal wave motion in a periodic beam[J].Journal of Sound & Vibration, 1983, 90:1-24. DOI:10.1016/0022-460X(83)90399-1.
[31] Mukherjee S, Parthan S. Free wave propagation in rotationally restrained periodic plates[J].Journal of Sound & Vibration, 1993, 163:535-544. DOI:10.1006/JSVI.1993.1186.
[32] Koo G H, Park Y S. Vibration reduction by using periodic supports in a piping system[J], Journal of Sound & Vibration, 1998, 210(1): 53-68. DOI:10.1006/JSVI.1997.1292.
[33] Zhang S, Fan W.An exact spectral formulation for the wave characteristics in an infinite Timoshenko-Ehrenfest beam supported by periodic elastic foundations[J]. Computers & Structures, 2023, 286: 107105. Doi.org/10.1016/j.compstruc.2023.107105.
[34] Ying Z G, Ni Y Q, Kang L. Mode localization characteristics of damaged quasiperiodic supported beam structures with local weak coupling[J].Structural Control & Health Monitoring, 2019, 26(6):e2351.DOI:10.1002/stc.2351.
[35] Pierre C. Mode localization and eigenvalue loci veering phenomena in disordered structures[J].Journal of Sound & Vibration, 1988, 126(3):485-502. DOI:10.1016/0022-460X(88)90226-X.
[36] Zhao T, Yang Z, Xu Y, et al.Mode localization in metastructure with T-type resonators for broadband vibration suppression[J]. Engineering Structures, 2022, 268: 114775. DOI:10.1016/0022-460X(88)90226-X.