|Table of Contents|

[1] Zhu Hongping, Shen Zehui, Weng Shun,. Damage identification for vertical stiffness of joints of periodic continuous beams based on spectral element method [J]. Journal of Southeast University (English Edition), 2023, 39 (4): 323-332. [doi:10.3969/j.issn.1003-7985.2023.04.001]
Copy

Damage identification for vertical stiffness of joints of periodic continuous beams based on spectral element method()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 4
Page:
323-332
Research Field:
Civil Engineering
Publishing date:
2023-12-20

Info

Title:
Damage identification for vertical stiffness of joints of periodic continuous beams based on spectral element method
Author(s):
Zhu Hongping Shen Zehui Weng Shun
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Keywords:
joints periodic continuous beam wave propagation spectral element method propagation constant
PACS:
TU352
DOI:
10.3969/j.issn.1003-7985.2023.04.001
Abstract:
Continuous beam bridges deteriorate during service because of environmental conditions. The stiffness of the supports of the continuous beam degenerates or even fails, severely affecting normal use. To identify the damage to the supports of periodic continuous beams, a damage identification method for vertical stiffness of the joints of periodic continuous beams based on the spectral element method(SEM)is proposed. The beam element adopts an Euler beam, with each cell comprising a beam unit and a joint. The dynamic stiffness matrix of a cell in a beam element is obtained using the SEM. Combined with the joint equilibrium equations, the transfer matrix of a periodic continuous beam can be established. The propagation constant is obtained by solving the eigenvalues of the transfer matrix. An objective function based on the propagation constant is proposed to identify the vertical stiffness damages of the joints of a periodic continuous beam using the interior point method. The proposed method is extensively validated through numerical case studies. Results demonstrate that this method can accurately identify the position and degree of damage to the vertical stiffness of a joint for single- and multi-parameter damage identification.

References:

[1] Tu Y M, Lu S L, Wang C, Damage identification of steel truss bridges based on deep belief network [J]. Journal of Southeast University(English Edition), 2022, 38(4):392-400. DOI: 10.3969/j. issn. 1003-7985.2022.04.008.
[2] Jiao H C, Yan Y D, Jin H. Evaluation of mechanical properties of cast steel nodes based on GTN damage model[J]. Journal of Southeast University(English Edition), 2021, 37(4):401-407. DOI: 10.3969/j. issn. 1003-7985.2021.04.009.
[3] Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies[J].The Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49-57. DOI:10.1243/03093247V142049.
[4] Wahab M M A, Roeck G D. Damage detection in bridges using modal curvatures:Application to a real damage scenario[J].Journal of Sound & Vibration, 1999, 226(2): 217-235. DOI:10.1006/jsvi.1999.2295.
[5] Droz C, Boukadia R, Desmet W.A multi-scale model order reduction scheme for transient modelling of periodic structures[J]. Journal of Sound and Vibration, 2021, 510: 116312. DOI:10.1016/j.jsv.2021.116312.
[6] Duong H N, Magd A W. Damage detection in slab structures based on two-dimensional curvature[J]. Advances in Engineering Software, 2023, 176: 103371. DOI:10.1016/j.advengsoft.2022.103371.
[7] Gu H S, Itoh Y. Aging behaviors of natural rubber in isolation bearings[J].Advanced Materials Research, 2010, 163: 3343-3347. DOI: 10.4028/www.scientific.net/AMR.163-167.3343.
[8] Ying Z G, Ni Y Q, Dynamic characteristics of infinite-length and finite-length rods with high-wave-number periodic parameters[J].Journal of Sound & Vibration, 2017, 24(11): 2344-2358. DOI: 10.1177/1077546316687676.
[9] Hussein M I, Leamy M J, Ruzzene M, et al. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802. DOI:10.1115/1.4026911.
[10] Wei J, Petyt M. A method of analyzing finite periodic structures, part 2: Comparison with infinite periodic structure theory[J].Journal of Sound & Vibration, 1997, 202(4):571-583. DOI: 10.1006/JSVI.1996.0888.
[11] Michaels T C T, Kusters R, Dear A J, et al.Geometric localization in supported elastic struts[J]. Proceedings of the Royal Society A, 2019, 475(2229): 20190370. DOI:10.1098/rspa.2019.0370.
[12] Bendiksen O O. Localization phenomena in structural dynamics[J].Chaos Solitons Fractals, 2000, 11(10):1621-1660. DOI:10.1016/S0960-0779(00)00013-8.
[13] Wierzbicki E, Wo’/zniak C. On the dynamics of combined plane periodic structures[J].Archive of Applied Mechanics, 2000, 70(6):387-398. DOI:10.1007/S004199900070.
[14] Michalak B. Vibrations of plates with initial geometrical periodical imperfections interacting with a periodic elastic foundation[J].Archive of Applied Mechanics, 2000, 70(7):508-518. DOI:10.1007/S004190000081.
[15] Romeo F, Luongo A. Vibration reduction in piecewise bi-coupled periodic structures[J].Journal of Sound & Vibration, 2003, 268(3):601-615. DOI:10.1016/S0022-460X(03)00375-4.
[16] Hull A J. Dynamic response of an elastic plate containing periodic masses[J].Journal of Sound & Vibration, 2008, 310(1/2):1-20. DOI:10.1016/j.jsv.2007.03.085.
[17] Manktelow K L, Leamy M J, Ruzzene M. Analysis and experimental estimation of nonlinear dispersion in a periodic string[J].Journal of Vibration and Acoustics: Transactions of the ASME. 2014, 136(3):031016.DOI:10.1115/1.4027137/380275.
[18] Hvatov A, Sorokin S. Free vibrations of finite periodic structures in pass- and stop-bands of the counterpart infinite waveguides[J].Journal of Sound & Vibration, 2015, 347:200-217. DOI:10.1016/j.jsv.2015.03.003.
[19] Junyi L, Balint D S. An inverse method to determine the dispersion curves of periodic structures based on wave superposition[J].Journal of Sound & Vibration, 2015, 350:41-72. DOI:10.1016/j.jsv.2015.03.041.
[20] Wu Z J, Li F M. Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices[J]. Journal of Vibration and Control, 2014, 22(3):710-72. DOI:10.1177/1077546314531805.
[21] Domadiya P G, Manconi E, Vanali M, et al. Numerical and experimental investigation of stopbands in finite and infinite periodic one-dimensional structures[J]. Journal of Vibration and Control, 2014, 22(4):920-931. DOI:10.1177/1077546314537863.
[22] Chen J S, Tsai S M. Sandwich structures with periodic assemblies on elastic foundation under moving loads[J].Journal of Vibration and Control, 2014, 22(10):2519-2529. DOI:10.1177/1077546314548470.
[23] Ying Z G, Ni Y Q. A double expansion method for the frequency response of finite-length beams with periodic parameters[J].Journal of Sound & Vibration, 2017, 391:180-193. DOI:10.1016/J.JSV.2016.12.011.
[24] Ying Z G, Ni Y Q. A response-adjustable sandwich beam with harmonic distribution parameters under stochastic excitations[J]. International Journal of Structural Stability & Dynamics, 2017, 17:1750075.DOI:10.1142/S0219455417500754.
[25] Heckl M A. Investigations on the vibrations of grillages and other simple beam structures[J].Journal of the acoustical Society of America, 1964, 36(7):743-748.DOI:10.1121/1.1919206.
[26] Mead D J. Free wave propagation in periodic supported, infinite beams[J].Journal of Sound & Vibration, 1970, 11:181-197. DOI:10.1016/S0022-460X(70)80062-1.
[27] Mead D J. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis[J].Journal of Sound & Vibration, 2009, 319(1/2):282-304. DOI:10.1016/J.JSV.2008.05.026.
[28] Mead D J. Wave propagation in continuous periodic structures: Research contributions from southampton[J].Journal of Sound & Vibration, 1996, 190:495-524. DOI:10.1006/JSVI.1996.0076.
[29] Mead D J, Parthan S. Free wave propagation in two-dimensional periodic plates[J].Journal of Sound & Vibration, 1979, 64:325-348. DOI:10.1016/0022-460X(79)90581-9.
[30] Mead D J, Markuš S. Coupled flexural-longitudinal wave motion in a periodic beam[J].Journal of Sound & Vibration, 1983, 90:1-24. DOI:10.1016/0022-460X(83)90399-1.
[31] Mukherjee S, Parthan S. Free wave propagation in rotationally restrained periodic plates[J].Journal of Sound & Vibration, 1993, 163:535-544. DOI:10.1006/JSVI.1993.1186.
[32] Koo G H, Park Y S. Vibration reduction by using periodic supports in a piping system[J], Journal of Sound & Vibration, 1998, 210(1): 53-68. DOI:10.1006/JSVI.1997.1292.
[33] Zhang S, Fan W.An exact spectral formulation for the wave characteristics in an infinite Timoshenko-Ehrenfest beam supported by periodic elastic foundations[J]. Computers & Structures, 2023, 286: 107105. Doi.org/10.1016/j.compstruc.2023.107105.
[34] Ying Z G, Ni Y Q, Kang L. Mode localization characteristics of damaged quasiperiodic supported beam structures with local weak coupling[J].Structural Control & Health Monitoring, 2019, 26(6):e2351.DOI:10.1002/stc.2351.
[35] Pierre C. Mode localization and eigenvalue loci veering phenomena in disordered structures[J].Journal of Sound & Vibration, 1988, 126(3):485-502. DOI:10.1016/0022-460X(88)90226-X.
[36] Zhao T, Yang Z, Xu Y, et al.Mode localization in metastructure with T-type resonators for broadband vibration suppression[J]. Engineering Structures, 2022, 268: 114775. DOI:10.1016/0022-460X(88)90226-X.

Memo

Memo:
Biography: Zhu Hongping(1965—), male, doctor, professor, hpzhu@hust.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 52078233, 51838006).
Citation: Zhu Hongping, Shen Zehui, Weng Shun.Damage identification for vertical stiffness of joints of periodic continuous beams based on spectral element method[J].Journal of Southeast University(English Edition), 2023, 39(4):323-332.DOI:10.3969/j.issn.1003-7985.2023.04.001.
Last Update: 2023-12-20