[1] Chung H Y, Lee C H, Su W J, et al. Application of fire-resistant steel to beam-to-column moment connections at elevated temperatures[J].Journal of Constructional Steel Research, 2010, 66(2): 289-303. DOI: 10.1016/j.jcsr.2009.09.009.
[2] Shi Y J, Li Z F, Chen H, et al. Experimental research on cyclic behavior of new types of beam column connections in highrise steel frames[J]. Journal of Building Structures, 2002, 23(3): 2-7.(in Chinese)
[3] Lew H S, Main J A, Robert S D, et al. Performance of steel moment connections under a column removal scenario. Ⅰ: Experiments[J].Journal of Structural Engineering, 2013, 139(1): 98-107. DOI: 10.1061/(asce)st.1943-541x.0000618.
[4] Wang W, Yan P, Li L. Research on joint models of welded flange-bolted web connection for progressive collapse analysis of steel frames[J]. Engineering Mechanics, 2014, 31(12): 119-125.(in Chinese)
[5] Ma K. Seismic fragility analysis of moment-resisting steel frames based on connection failure characteristic[D]. Nanjing: Southeast University, 2017.(in Chinese)
[6] Wang W Y, Dong Y L. Study of welded flange-bolted web connections of steel structures in fire[J]. Journal of Hebei Institute of Architectural Science and Technology, 2006, 23(2): 24-27.(in Chinese)
[7] Mao C J, Chiou Y J, Hsiao P A, et al. Fire response of steel semi-rigid beam-column moment connections[J].Journal of Constructional Steel Research, 2009, 65(6): 1290-1303. DOI: 10.1016/j.jcsr.2008.12.009.
[8] Hu J. Study on the response of external welded flange-bolted web joints exposed to fire[D]. Hefei: University of Science and Technology of China, 2009.(in Chinese)
[9] Fan S G, Liang D, Zeng S R, et al. Fire resistance design of the bolted-welded hybrid composite connection in steel frame[J].Fire Safety Journal, 2022, 133: 103672. DOI: 10.1016/j.firesaf.2022.103672.
[10] Fan S G, Duan S J, Zeng S R, et al. Experimental study and numerical simulation analysis of the Bolted-Welded hybrid connection joint of steel frame under fire[J].Structures, 2022, 41: 77-98. DOI: 10.1016/j.istruc.2022.04.100.
[11] Qiang X H, Shu Y, Jiang X, et al. Experimental study on mechanical behavior of high strength steel flange-welded web-bolted connections under fire condition[J]. Journal of Tongji University(Natural Science), 2022, 50(10): 1432-1442.(in Chinese)
[12] Shi Y J, Shi G, Wang Y Q. A simplified calculation method for moment-rotation curve of semi-rigid end-plate connections[J]. China Civil Engineering Journal, 2006, 39(3): 19-23.(in Chinese)
[13] Shi W L, Li G Q. Moment capacity of semi-rigid composite beam-column joints with flush end plate connections: Ⅱ. under positive moment[J]. China Civil Engineering Journal, 2007, 40(9): 30-35.(in Chinese)
[14] Wang S F, Chen Y Y. Calculation of initial stiffness of beam-to-column end-plate joint[J]. Engineering Mechanics, 2008, 25(8): 109-115.(in Chinese)
[15] Gao J, Shi W L, Li G Q, et al. Initial rotational stiffness of semi-rigid composite beam-to-column joints with flush end plate connections[J]. Engineering Mechanics, 2011, 28(3): 55-61.
[16] Heidarpour A, Bradford M A. Behaviour of a T-stub assembly in steel beam-to-column connections at elevated temperatures[J]. Engineering Structures, 2008, 30(10): 2893-2899. DOI: 10.1016/j.engstruct.2008.04.007.
[17] Strejek M, Rezníek J, Tan K H, et al. Behaviour of column web component of steel beam-to-column joints at elevated temperatures[J]. Journal of Constructional Steel Research, 2011, 67(12): 1890-1899. DOI: 10.1016/j.jcsr.2011.06.004.
[18] Rassati G A, Leon R T, Noè S. Component modeling of partially restrained composite joints under cyclic and dynamic loading[J]. Journal of Structural Engineering, 2004, 130(2): 343-351. DOI: 10.1061/(asce)0733-9445(2004)130: 2(343).
[19] Fu Q N. Dynamic performance study of steel frames based on component-based joint models under progressive collapse[D]. Chongqing: Chongqing University, 2013.(in Chinese)
[20] Cai X N, Meng S P, Sun W W. Experimental study on performance of components of the exterior self-centering post-tensioned precast connections[J]. Engineering Mechanics, 2014, 31(3): 160-167.(in Chinese)
[21] Yuan H. Analysis of joint stiffness based on component method and improved response surface method[D]. Guangzhou: South China University of Technology, 2017.(in Chinese)
[22] Yan J. Study on the semi-rigid beam-column joint under cyclic loading based on component method[D]. Wuhan: Huazhong University of Science and Technology, 2018.(in Chinese)
[23] Chen X S, Shi G, Zhao J L, et al. Calculation of moment-rotation curves of ultra-large capacity end-plate connections based on component method[J]. Engineering Mechanics, 2017, 34(5): 30-41.(in Chinese)
[24] Gao Y Q, Yu H X, Shi G. Research on component-based model for flush endplate connections in fire considering the effect of the shear force[J]. Building Structure, 2018, 48(19): 55-60. DOI:10.19701/j.jzjg.2018.19.012. (in Chinese)
[25] Zhang Y F, Chen Y Y. Component method models for the analysis of end-plate joints with continuous beam and column under cyclic loads[J]. Progress in Steel Building Structures, 2018, 20(4): 47-57, 96. DOI:10.13969/j.cnki.cn31-1893.2018.04.006. (in Chinese)
[26] Tan Z, Zhong W H, Li C F. Research on component joint models of semi-rigid joint model with top and seat angles and double web angles under progressive collapse[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 445-453. DOI:10.13409/j.cnki.jdpme.2019.03.010. (in Chinese)
[27] Usmani A S, Chung Y C, Torero J L. How did the WTC towers collapse: A new theory[J].Fire Safety Journal, 2003, 38(6): 501-533. DOI: 10.1016/S0379-7112(03)00069-9.
[28] Flint G, Usmani A, Lamont S, et al. Structural response of tall buildings to multiple floor fires[J].Journal of Structural Engineering, 2007, 133(12): 1719-1732. DOI: 10.1061/(asce)0733-9445(2007)133: 12(1719).
[29] Lange D, Röben C, Usmani A. Tall building collapse mechanisms initiated by fire: Mechanisms and design methodology[J]. Engineering Structures, 2012, 36: 90-103. DOI: 10.1016/j.engstruct.2011.10.003.
[30] Sun RR, Huang Z H, Burgess I W. Progressive collapse analysis of steel structures under fire conditions[J]. Engineering Structures, 2012, 34: 400-413. DOI: 10.1016/j.engstruct.2011.10.009.
[31] Jiang J A, Li G Q, Usmani A. Progressive collapse mechanisms of steel frames exposed to fire[J].Advances in Structural Engineering, 2014, 17(3): 381-398. DOI: 10.1260/1369-4332.17.3.381.
[32] Agarwal A, Varma A H. Fire induced progressive collapse of steel building structures: The role of interior gravity columns[J].Engineering Structures, 2014, 58: 129-140. DOI: 10.1016/j.engstruct.2013.09.020.
[33] Qin C, Mahmoud H. Collapse performance of composite steel frames under fire[J].Engineering Structures, 2019, 183: 662-676. DOI: 10.1016/j.engstruct.2019.01.032.
[34] Chen S C, Tian X K, Zhang L, et al. Experimental study on the initial collapse mechanism of multi-story steel frames under localized fire[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1): 113-118. DOI:10.13409/j.cnki.jdpme.2015.01.019. (in Chinese)
[35] Jiang B H, Li G Q, Li L L, et al. Simulations on progressive collapse resistance of steel moment frames under localized fire[J]. Journal of Constructional Steel Research, 2017, 138: 380-388. DOI: 10.1016/j.jcsr.2017.05.018.
[36] European Committee for Standardization. Design of steel structures, Part 1-8: Design of joints: Eurocode 3, EN 1993-1-8 [S]. Belgium: European Committee for Standardization, 2005.
[37] Yim H C, Krauthammer T. Mathematical-mechanical model of WUF-B connection under monotonic load[J]. Engineering Journal, 2010, 47(2): 71-90.
[38] ABAQUS. ABAQUS user’s manual, version 2022[M]. Pawtucket, RI, USA: Hibbitt, Karlsson & Sorensen, Inc., 2022.
[39] European Committee for Standardization. Design of steel structures, Part 1-2: General rules—Structural fire design: Eurocode 3, EN 1993-1-2[S]. Belgium: European Committee for Standardization, 2005.