|Table of Contents|

[1] Zhu Li, Meng Bowen, Huo Xuejin, Liu Wei, et al. Cable force optimization of cable-stayed bridges based on the influence matrix and elite genetic algorithm [J]. Journal of Southeast University (English Edition), 2024, 40 (2): 129-139. [doi:10.3969/j.issn.1003-7985.2024.02.003]
Copy

Cable force optimization of cable-stayed bridges based on the influence matrix and elite genetic algorithm()
基于影响矩阵和精英遗传算法的斜拉桥索力优化
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 2
Page:
129-139
Research Field:
Civil Engineering
Publishing date:
2024-06-13

Info

Title:
Cable force optimization of cable-stayed bridges based on the influence matrix and elite genetic algorithm
基于影响矩阵和精英遗传算法的斜拉桥索力优化
Author(s):
Zhu Li1 Meng Bowen1 Huo Xuejin2 Liu Wei1
1School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430050, China
朱力1 孟博文1 霍学晋2 刘伟1
1北京交通大学土木建筑工程学院, 北京 100044; 2中铁大桥勘察设计研究院有限公司, 武汉 430050
Keywords:
cable-stayed bridge cable force optimization minimum bending moment energy influence matrix genetic algorithm feasible domain
斜拉桥 索力优化 最小弯矩能 影响矩阵 遗传算法 可行域
PACS:
TU3
DOI:
10.3969/j.issn.1003-7985.2024.02.003
Abstract:
The limitations of conventional cable force optimization methods, which fail to automatically optimize and consider the overall performance of the bridge structure, as well as the drawbacks of extensive calculations, lengthy processing time, low efficiency, and slow convergence speed, when combined with intelligent optimization algorithms, should be addressed. Ansys and Matlab are used as the structural calculator and master control programs, respectively, with the minimum bending moment energy as the control objective.Moreover, the influence matrix and elite retention strategy are incorporated into the genetic algorithm to optimize the cable force during the bridge formation stage. This method can simultaneously account for the force characteristics of the main girder and pylon. Utilizing the influence matrix, the issue that each generation requires finite element evaluation can be resolved, thereby drastically reducing the amount of calculation. In addition to capitalizing on the benefits of the conventional influence matrix method, the proposed approach considers the iterative process of parameter selection and permits the addition of special constraint requirements to critical sections of the structure, thereby enhancing the realism of the optimization procedure. Furthermore, the introduction of the elite retention strategy enhances the convergence speed and stability of evolutionary iterations. Finally, a practical engineering application is utilized to validate the viability of the proposed method.
由于传统索力优化方法不能自动优化和兼顾全桥结构性能, 以及与智能优化算法相结合后存在计算量大、耗时长、效率低和收敛速度慢等缺点, 以Ansys和Matlab分别作为结构计算器和主控程序, 以最小弯矩能为控制目标, 将影响矩阵和精英保留策略引入到遗传算法中, 实现成桥阶段的索力优化.该方法能够同时兼顾主梁与主塔的受力特性, 而且影响矩阵的应用可以解决每一代都需要有限元评估的问题, 大大减少了计算量.与传统的影响矩阵法相比, 所提方法在吸取影响矩阵法优点的基础上, 还考虑参数迭代过程, 可在结构的关键截面添加特殊的约束要求, 使得优化过程更加符合实际, 而精英保留策略的引入可以提高进化迭代收敛的速度与进化过程的稳定性.最后, 通过一个实际工程应用验证了所提方法的可行性.

References:

[1] Wang S, Tao T Y, Wang H. Comparison of extraction methods for temperature-induced displacement of expansion joint of long-span cable-stayed bridge[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(4):664-671. DOI:10.3969/j.issn.1001-0505.2023.04.012. (in Chinese)
[2] Wang P H, Tseng T C, Yang C G. Initial shape of cable-stayed bridges[J]. Computers & Structures, 1993, 46(6):1095-1106.DOI:10.1016/0045-7949(93)90095-u.
[3] Chen D W, Au F T K, Tham L G, et al. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method[J]. Computers & Structures, 2000, 74(1): 1-9. DOI: 10.1016/s0045-7949(98)00315-0.
[4] Fan L C, Du G H, Ma J Z, et al. Cable-stayed bridge cable force optimization and nonlinear ideal regression analysis[J]. Journal of Chongqing Jiaotong University, 1992(1): 1-12.(in Chinese)
[5] Zhou Y, Zhang X S. The calculation method of dead-load cable force optimization of composite girder cable-stayed bridge based on the minimum bending energy[J]. Journal of China & Foreign Highway, 2018, 38(4): 177-180. DOI:10.14048/j.issn.1671-2579.2018.04.037. (in Chinese)
[6] Liang P, Xiao R C, Zhang X S. Practical method of optimization of cable tensions for cable-stayed bridges[J].Journal of Tongji University(Natural Science), 2003, 31(11): 1270-1274. DOI:10.3321/j.issn: 0253-374X.2003.11.003. (in Chinese)
[7] Xiao R C, Xiang H F. Influence matrix method for cable-stayed bridge cable-stay optimization[C]//The Twelfth Annual Conference of the Chinese Society of Bridge and Structural Engineering of the Chinese Society of Civil Engineers. Guangzhou, 1996:9.(in Chinese)
[8] Huang H X, Zhang Y, Cheng S S, et al. Cable force optimization method in two stages for spatial cables[J].Applied Mechanics and Materials, 2013, 405: 1695-1698. DOI: 10.4028/www.scientific.net/amm.405-408.1695.
[9] Li H H, Liu S Y, Shan Q W, et al. Investigation and optimization of the cable force of a combined highway and railway steel truss cable-stayed bridge in completion state[J].Vibroengineering Procedia, 2019, 28: 217-222. DOI: 10.21595/vp.2019.21052.
[10] Atmaca B. Size and post-tensioning cable force optimization of cable-stayed footbridge[J].Structures, 2021, 33: 2036-2049. DOI: 10.1016/j.istruc.2021.05.050.
[11] Atmaca B, Dede T, Grzyw(·overI)nsk(·overI)M. Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm[J].Steel and Composite Structures, 2020, 34(6): 853-862.
[12] Wang L F, Xiao Z W, Li M, et al. Cable force optimization of cable-stayed bridge based on multiobjective particle swarm optimization algorithm with mutation operation and the influence matrix[J].Applied Sciences, 2023, 13(4): 2611. DOI: 10.3390/app13042611.
[13] Dan D H, Yang T. Automatic cable force adjustment for cable stayed bridge based on influence matrix and particle swarm optimization algorithm[J].Journal of Tongji University(Natural Science), 2013, 41(3): 355-360. DOI:10.3969/j.issn.0253-374x.2013.03.007. (in Chinese)
[14] Song C L, Xiao R C, Sun B, et al. Cable force optimization of cable-stayed bridges: A surrogate model-assisted differential evolution method combined with B-spline interpolation curves[J].Engineering Structures, 2023, 283: 115856. DOI: 10.1016/j.engstruct.2023.115856.
[15] Song C L, Xiao R C, Sun B. Optimization of cable pre-tension forces in long-span cable-stayed bridges considering the counterweight[J]. Engineering Structures, 2018, 172: 919-928. DOI: 10.1016/j.engstruct.2018.06.061.
[16] Sung Y C, Wang C Y, Teo E H. Application of particle swarm optimisation to construction planning for cable-stayed bridges by the cantilever erection method[J].Structure and Infrastructure Engineering, 2016, 12(2): 208-222. DOI: 10.1080/15732479.2015.1008521.
[17] Ha M H, Vu Q A, Truong V H. Optimum design of stay cables of steel cable-stayed bridges using nonlinear inelastic analysis and genetic algorithm[J].Structures, 2018, 16: 288-302. DOI: 10.1016/j.istruc.2018.10.007.
[18] Guo J J, Guan Z G. Optimization of the cable forces of completed cable-stayed bridges with differential evolution method[J].Structures, 2023, 47: 1416-1427. DOI: 10.1016/j.istruc.2022.12.004.
[19] Guo J J, Yuan W C, Dang X Z, et al. Cable force optimization of a curved cable-stayed bridge with combined simulated annealing method and cubic B-spline interpolation curves[J].Engineering Structures, 2019, 201: 109813. DOI: 10.1016/j.engstruct.2019.109813.
[20] Su C, Li L. Optimization of non-equal periodic preventive maintenance based on hidden semi-Markov degradation model[J].Journal of Southeast University(Natural Science Edition), 2021, 51(2): 342-349. DOI:10.3969/j.issn.1001-0505.2021.02.022. (in Chinese)
[21] Xiang H F. Higher bridge structure theory[M]. Beijing: China Communications Press, 2013: 390-396.(in Chinese)
[22] Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor, MI, USA: University of Michigan Press, 1975: 32-65.
[23] De J K. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor, MI, USA: University of Michigan, 1975.
[24] Goldberg D E. Genetic algorithms in search optimization and machine learning[M]. Boston, MA, USA: Addison-Wesley Pub. Co., 1989: 1-83.
[25] Xu Z D, Wang H, Zhao K Y, et al. Non-stationary buffeting analysis and comfort assessment of long-span corridor bridge in typhoon environment[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(6):1028-1033. DOI:10.3969/j.issn.1001-0505.2023.06.009. (in Chinese)
[26] Lin Y X, Xu Z D, Wang H, et al. Analysis of wind vibration response of suspended derrick under downburst[J]. Journal of Southeast University(English Edition), 2023, 39(4): 333-339. DOI: 10.3969/j.issn.1003-7985.2023.04.002.

Memo

Memo:
Biography: Zhu Li(1986─), male, doctor, professor, zhuli@bjtu.edu.cn.
Foundation item: The National High-Level Youth Talent Project in 2023.
Citation: Zhu Li, Meng Bowen, Huo Xuejin, et al. Cable force optimization of cable-stayed bridges based on the influence matrix and elite genetic algorithm[J].Journal of Southeast University(English Edition), 2024, 40(2):129-139.DOI:10.3969/j.issn.1003-7985.2024.02.003.
Last Update: 2024-06-20