[1] Ghoshal A, Sundaresan M J, Schulz M J, et al. Structural health monitoring techniques for wind turbine blades[J].Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 309-324. DOI: 10.1016/S0167-6105(99)00132-4.
[2] Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges[J].Engineering Structures, 2005, 27(12): 1715-1725. DOI: 10.1016/j.engstruct.2005.02.021.
[3] Spencer B F Jr, Ruiz-Sandoval M E, Kurata N. Smart sensing technology: Opportunities and challenges[J]. Structural Control and Health Monitoring, 2004, 11(4): 349-368. DOI: 10.1002/stc.48.
[4] Wan H P, Ni Y Q. Bayesian multi-task learning methodology for reconstruction of structural health monitoring data [J].Structural Health Monitoring, 2019, 18(4): 1282-1309. DOI: 10.1177/1475921718794953.
[5] Hu J, Guo J, Ou J P, et al. Measurement of wind field characteristics at a long-span suspension bridge [J]. Journal of Southeast University(English Edition), 2011, 27(3): 328-334. DOI: 10.3969/j.issn.1003-7985.2011.03.020.
[6] Liu X L, Huang Q, Ren Y, Fan Y H, et al. Extraction of cable forces due to dead load in cable-stayed bridges under random vehicle loads [J]. Journal of Southeast University(English Edition), 2015, 31(3): 407-411. DOI: 10.3969/j.issn.1003-7985.2015.03.019.
[7] Wang H, Li A Q, Guo T, et al. Comparable study on typhoon and strong northern wind characteristics of the Runyang Suspension Bridge based on field tests [J]. Journal of Southeast University(English Edition), 2009, 25(1): 99-103. DOI: 10.3969/j.issn.1003-7985.2009.01.021.
[8] Mao J X, Wang H, Spencer B F Jr. Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders[J].Structural Health Monitoring, 2021, 20(4): 1609-1626. DOI: 10.1177/1475921720924601.
[9] Mahapatro A, Khilar P M. Fault diagnosis in wireless sensor networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 2000-2026. DOI: 10.1109/SURV.2013.030713.00062.
[10] Zidi S, Moulahi T, Alaya B. Fault detection in wireless sensor networks through SVM classifier[J]. IEEE Sensors Journal, 2018, 18(1): 340-347. DOI: 10.1109/JSEN.2017.2771226.
[11] Magalhães F, Cunha Á, Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection[J]. Mechanical Systems and Signal Processing, 2012, 28: 212-228. DOI: 10.1016/j.ymssp.2011.06.011.
[12] Mao J X, Wang H, Feng D M, et al. Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition[J].Structural Control and Health Monitoring, 2018, 25(5): e2146. DOI: 10.1002/stc.2146.
[13] Muhammed T, Shaikh R A. An analysis of fault detection strategies in wireless sensor networks[J].Journal of Network and Computer Applications, 2017, 78: 267-287. DOI: 10.1016/j.jnca.2016.10.019.
[14] Lau B C P, Ma E W M, Chow T W S. Probabilistic fault detector for Wireless Sensor Network[J].Expert Systems with Applications, 2014, 41(8): 3703-3711. DOI: 10.1016/j.eswa.2013.11.034.
[15] Abid A, Kachouri A, Guiloufi A B F, et al. Centralized KNN anomaly detector for WSN[C]//2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices(SSD15). Mahdia, Tunisia, 2015: 1-4. DOI: 10.1109/SSD.2015.7348091.
[16] Warriach E U, Tei K. Fault detection in wireless sensor networks: A machine learning approach[C]//2013 IEEE 16th International Conference on Computational Science and Engineering. Sydney, Australia, 2014: 758-765. DOI: 10.1109/CSE.2013.116.
[17] Panda M, Khilar P M. Energy efficient distributed fault identification algorithm in wireless sensor networks[J]. Journal of Computer Networks and Communications, 2014, 2014: 1-16. DOI: 10.1155/2014/323754.
[18] Chen J R, Kher S, Somani A. Distributed fault detection of wireless sensor networks[C]//Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks. Los Angeles, CA, USA, 2006: 65-72. DOI: 10.1145/1160972.1160985.
[19] Obst O. Distributed fault detection in sensor networks using a recurrent neural network[J].Neural Processing Letters, 2014, 40(3): 261-273. DOI: 10.1007/s11063-013-9327-4.
[20] Younis O, Fahmy S, Santi P. An architecture for robust sensor network communications[J].International Journal of Distributed Sensor Networks, 2005, 1(3/4): 305-327. DOI: 10.1080/15501320500330786.
[21] Barborak M, Dahbura A, Malek M. The consensus problem in fault-tolerant computing[J]. ACM Computing Surveys, 1993, 25(2): 171-220. DOI: 10.1145/152610.152612.
[22] Ni K, Ramanathan N, Chehade M N H, et al. Sensor network data fault types[J].ACM Transactions on Sensor Networks, 2009, 5(3): 1-29. DOI: 10.1145/1525856.1525863.
[23] Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition[J].IEEE Transactions on Information Theory, 1975, 21(1): 32-40. DOI: 10.1109/TIT.1975.1055330.
[24] Xiao C X, Liu M. Efficient mean-shift clustering using Gaussian KD-tree[J].Computer Graphics Forum, 2010, 29(7): 2065-2073. DOI: 10.1111/j.1467-8659.2010.01793.x.
[25] Ni Y Q, Xia Y, Liao W Y, et al. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower[J].Structural Control and Health Monitoring, 2009, 16(1): 73-98. DOI: 10.1002/stc.303.
[26] Ni Y Q, Xia Y, Lin W, et al. SHM benchmark for high-rise structures: A reduced-order finite element model and field measurement data[J].Smart Structures and Systems, 2012, 10(4/5): 411-426. DOI: 10.12989/sss.2012.10.4_5.411.
[27] Saeed U, Jan S U, Lee Y D, et al. Fault diagnosis based on extremely randomized trees in wireless sensor networks[J].Reliability Engineering & System Safety, 2021, 205: 107284. DOI: 10.1016/j.ress.2020.107284.
[28] Noshad Z, Javaid N, Saba T, et al. Fault detection in wireless sensor networks through the random forest classifier[J]. Sensors, 2019, 19(7): 1568. DOI: 10.3390/s19071568.