[1] Zhao Z, Dai Y, Dou S X, et al. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials[J]. Materials Today Energy, 2021, 20: 100690. DOI: 10.1016/j.mtener.2021.100690.
[2] Xu C, Song Y, Han M D, et al. Portable and wearable self-powered systems based on emerging energy harvesting technology[J]. Microsystems & Nanoengineering, 2021, 7: 25. DOI: 10.1038/s41378-021-00248-z.
[3] Nan X L, Wang X, Kang T T, et al. Review of flexible wearable sensor devices for biomedical application[J]. Micromachines, 2022, 13(9): 1395. DOI: 10.3390/mi13091395.
[4] Liu L M, Zhang H J, Zhou S Y, et al. Boosting the piezoelectric response and interfacial compatibility in flexible piezoelectric composites via DET-doping BT nanoparticles[J]. Polymers, 2024, 16(6): 743. DOI: 10.3390/polym16060743.
[5] Sorayani Bafqi M S, Bagherzadeh R, Latifi M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency[J]. Journal of Polymer Research, 2015, 22(7): 130. DOI: 10.1007/s10965-015-0765-8.
[6] Serairi L, Leprince-Wang Y. ZnO nanowire-based piezoelectric nanogenerator device performance tests[J]. Crystals, 2022, 12(8): 1023. DOI: 10.3390/cryst12081023.
[7] Lopez Garcia A J, Mouis M, Cresti A, et al. Influence of slow or fast surface traps on the amplitude and symmetry of the piezoelectric response of semiconducting-nanowire-based transducers[J]. Journal of Physics D: Applied Physics, 2022, 55(40): 405502. DOI: 10.1088/1361-6463/ac8251.
[8] Hao F Q, Wang B, Wang X, et al. Soybean-inspired nanomaterial-based broadband piezoelectric energy harvester with local bistability[J]. Nano Energy, 2022, 103: 107823. DOI: 10.1016/j.nanoen.2022.107823.
[9] Chen K H, Cheng C M, Chen Y J, et al. Lead-free piezoelectric ceramic micro-pressure thick films[J].Crystals, 2023, 13(2): 201. DOI: 10.3390/cryst13020201.
[10] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. DOI: 10.1126/science.1124005.
[11] Qin Y, Wang X D, Wang Z L.Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. DOI: 10.1038/nature06601.
[12] Zhu G, Yang R S, Wang S H, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Letters, 2010, 10(8): 3151-3155. DOI: 10.1021/nl101973h.
[13] Hu Y F, Lin L, Zhang Y, et al. Replacing a battery by a nanogenerator with 20 V output[J]. Advanced Materials, 2012, 24(1): 110-114. DOI: 10.1002/adma.201103727.
[14] Huang C T, Song J H, Tsai C M, et al. Single-InN-nanowire nanogenerator with upto 1 V output voltage[J]. Advanced Materials, 2010, 22(36): 4008-4013. DOI: 10.1002/adma.201000981.
[15] Huang C T, Song J H, Lee W F, et al. GaN nanowire arrays for high-output nanogenerators[J]. Journal of the American Chemical Society, 2010, 132(13): 4766-4771. DOI: 10.1021/ja909863a.
[16] Wang X B, Song J H, Zhang F, et al. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials[J]. Advanced Materials, 2010, 22(19): 2155-2158. DOI: 10.1002/adma.200903442.
[17] Lin Y F, Song J H, Ding Y, et al. Piezoelectric nanogenerator using CdS nanowires[J]. Applied Physics Letters, 2008, 92(2): 022105. DOI: 10.1063/1.2831901.
[18] Lin Y F, Song J H, Ding Y, et al. Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect[J]. Advanced Materials, 2008, 20(16): 3127-3130. DOI: 10.1002/adma.200703236.
[19] Lu M Y, Song J H, Lu M P, et al.ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation[J]. ACS Nano, 2009, 3(2): 357-362. DOI: 10.1021/nn800804r.
[20] Shao L, Feng P, Liu M, et al. Interface bonding performance and enhancement mechanism of in-situ polymerization modified mortar under wet environments [J]. Journal of Southeast University(Natural Science Edition), 2023, 53(5): 749-55. DOI:10.3969/j.issn.1001-505.2023.05.001. (in Chinese)
[21] Xiong Z, Zheng K, Chen Z, et al. Design and mechanical performance analysis of a new GFRP-steel buckling restrained brace [J]. Journal of Southeast University(Natural Science Edition), 2024, 54(1): 156-166. DOI: 10.3969/j.issn.1001-0505.2024.01.020.( in Chinese)
[22] Du F, She W. Design and fabrication of bioinspired cement aerogel and its performance analysis [J]. Journal of Southeast University(Natural Science Edition), 2024, 54(2): 346-352. DOI:10.3969/j.issn.1001-0505.2024.02.011.( in Chinese)
[23] Chang C, Tran V H, Wang J B, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency[J]. Nano Letters, 2010, 10(2): 726-731. DOI: 10.1021/nl9040719.
[24] Pu J, Yan X J, Jiang Y D, et al. Piezoelectric actuation of direct-write electrospun fibers[J]. Sensors and Actuators A: Physical, 2010, 164(1/2): 131-136. DOI: 10.1016/j.sna.2010.09.019.
[25] Fang J, Wang X G, Lin T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride)nanofibre membranes[J]. Journal of Materials Chemistry, 2011, 21(30): 11088-11091. DOI: 10.1039/C1JM11445J.
[26] Mandal D, Yoon S, Kim K J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene)nanofiber web-based nanogenerator and nano-pressure sensor[J]. Macromolecular Rapid Communications, 2011, 32(11): 831-837. DOI: 10.1002/marc.201100040.
[27] Liu Z H, Pan C T, Lin L W, et al. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning[J]. Sensors and Actuators A: Physical, 2013, 193: 13-24. DOI: 10.1016/j.sna.2013.01.007.
[28] Athira B S, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44239-44250. DOI: 10.1021/acsami.2c07911.
[29] Zhao B B, Chen Z X, Cheng Z F, et al. Piezoelectric nanogenerators based on electrospun PVDF-coated mats composed of multilayer polymer-coated BaTiO3 nanowires[J]. ACS Applied Nano Materials, 2022, 5(6): 8417-8428. DOI: 10.1021/acsanm.2c01538.
[30] Liu P, Wu G, Tang B J, et al. Experimental study on mechanical properties of PVDF textile[J].Journal of Southeast University(Natural Science Edition), 2017, 47(6): 1195-1200. DOI:10.3969/j.issn.1001-0505.2017.06.018. (in Chinese)
[31] Chang J, Dommer M, Chang C, et al. Piezoelectric nanofibers for energy scavenging applications[J]. Nano Energy, 2012, 1(3): 356-371. DOI: 10.1016/j.nanoen.2012.02.003.
[32] Constantino C J L, Job A E, Simões R D, et al. Phase transition in poly(vinylidene fluoride)investigated with micro-Raman spectroscopy[J]. Applied Spectroscopy, 2005, 59(3): 275-279. DOI: 10.1366/0003702053585336.
[33] Mattsson B, Ericson H, Torell L M, et al. Micro-Raman investigations of PVDF-based proton-conducting membranes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(16): 3317-3327. DOI: 10.1002/(sici)1099-0518(19990815)37: 163317: aid-pola30>3.0.co;2-#.
[34] Damaraju S M, Wu S L, Jaffe M, et al. Structural changes in PVDF fibers due to electrospinning and its effect on biological function[J]. Biomedical Materials, 2013, 8(4): 045007. DOI: 10.1088/1748-6041/8/4/045007.
[35] Zhou S Y, Zhang H J, Du C Z, et al.Chitosan-doped PVDF film with enhanced electroactive β phase for piezoelectric sensing[J]. ACS Applied Electronic Materials, 2024, 6(4): 2575-2583. DOI: 10.1021/acsaelm.4c00184.
[36] Chen J, Wu S, Zhao B, et al. Temperature effect on tensile properties of warp-knitted composite fabric [J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 251-259. DOI:10.3969/j.issn.1001-505.2020.02.007. (in Chinese)
[37] Bouhamed A, Binyu Q, Böhm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation [J]. Compos Sci Technol, 2021, 208: 108769. DOI: 10.1016/j.compscitech.2021.108769.
[38] Wang Y R, Zheng J M, Ren G Y, et al. A flexible piezoelectric force sensor based on PVDF fabrics[J]. Smart Materials and Structures, 2011, 20(4): 045009. DOI: 10.1088/0964-1726/20/4/045009.
[39] Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidene fluoride)through electrospinning[J]. Macromolecular Rapid Communications, 2007, 28(22): 2159-2162. DOI: 10.1002/marc.200700544.
[40] Ribeiro C, Sencadas V, Ribelles J L G, et al. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride)electrospun membranes[J]. Soft Materials, 2010, 8(3): 274-287. DOI: 10.1080/1539445x.2010.495630.
[41] Liu Z H, Pan C T, Lin L W, et al. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-fieldelectrospinning process[J]. Smart Materials and Structures, 2014, 23(2): 025003. DOI: 10.1088/0964-1726/23/2/025003.
[42] Yu H, Huang T, Lu M X, et al. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity[J]. Nanotechnology, 2013, 24(40): 405401. DOI: 10.1088/0957-4484/24/40/405401.
[43] Uddin A S M I, Lee D, Cho C, et al. Impact of multi-walled CNT incorporation on dielectric properties of PVDF-BaTiO3 nanocomposites and their energy harvesting possibilities[J]. Coatings, 2022, 12(1): 77. DOI: 10.3390/coatings12010077.
[44] Lee J S, Shin K Y, Cheong O J, et al. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring[J]. Scientific Reports, 2015, 5: 7887. DOI: 10.1038/srep07887.
[45] Lee M, Chen C Y, Wang S H, et al. A hybrid piezoelectric structure for wearable nanogenerators[J]. Advanced Materials, 2012, 24(13): 1759-1764. DOI: 10.1002/adma.201200150.
[46] Li Z T, Zhang X, Li G H.In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor[J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5475-5479. DOI: 10.1039/c3cp54083a.