|Table of Contents|

[1] He Bo, Du Yan, Cao Luhui, Li Jun, et al. An iterative reaching-diversity bound detectorfor MIMO SC-FDE systems [J]. Journal of Southeast University (English Edition), 2023, 39 (1): 62-67. [doi:10.3969/j.issn.1003-7985.2023.01.007]

An iterative reaching-diversity bound detectorfor MIMO SC-FDE systems()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2023 1
Research Field:
Information and Communication Engineering
Publishing date:


An iterative reaching-diversity bound detectorfor MIMO SC-FDE systems
He Bo1 Du Yan1 Cao Luhui2 Li Jun3
1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
2Informazition Office, Shandong University, Jinan 250100, China
3School of Electronic Information Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
receiving-diversity bound spatially multiplexed systems multiple-input-multiple-output(MIMO)single carrier-frequency-domain equalization(SC-FDE) iterative detection algorithm
To improve the detection reliability and reduce the computational complexity of multiple-input-multiple-output(MIMO)single carrier-frequency-domain equalization(SC-FDE)systems, a novel iterative signal detection algorithm, called iterative interference cancellation(IIC), is proposed. Moreover, a receive diversity lower bound(RDLB)is derived as a benchmark to evaluate the bit error rate performance. The proposed IIC utilizes the initial value provided by the basic linear equalization algorithm, progressively removes the inter-layer interference by the iterative process, and gradually improves the reliability of the detected results. The results indicate that the proposed IIC approaches to the RDLB at the Eb/N0 of 9 dB and 16 dB for 4-ary and 16-ary quadrature amplitude modulations, respectively. The computational complexity of an iterative loop is linear to the number of transmit antennas, and the overall complexity is lower than that of a popular vertically Bell laboratory layered space-time detector when the antenna size is larger than 3×3. Therefore, the proposed algorithm remarkably enhances the reliability of MIMO SC-FDE systems with an antenna size of not less than 3×3 and is computationally efficient and practical even in large-dimension MIMO systems for 5th-generation(5G)or beyond 5G communications.


[1] Conceigao F, Gomes M, Silva V, et al. A survey of candidate waveforms for beyond 5G systems[J].Electronics, 2021, 10(21):1-26. DOI:10.3390/electronics10010021.
[2] Dahlman E, Parkvall S, Skold J. 4G LTE/LTE-advanced for mobile broadband[M]. 1st ed. Oxford, UK:Oxford Publishers, 2012:49, 61.
[3] Jeong D, Kim J. Signal detection for MIMO SC-FDMA systems exploiting block circulant channel structure[J].IEEE transactions on Vehicular Technology, 2015, 65(9):7774-7779. DOI:10.1109/TVT.2015.2485264.
[4] Zhu Y K, Letaief B. Single-carrier frequency-domain equalization with noise prediction for MIMO systems[J].IEEE transactions on communications, 2007, 55(5):1063-1076. DOI:10.1109/TCOMM.2007.895983.
[5] Benvenuto N, Dinis R, Falconer D, et al. Single-carrier modulation with nonlinear frequency domain equalization:An idea whose time has come again[J]. Proceedings of the IEEE, 2010, 98(1):69-96. DOI:10.1109/JPROC.2009.2031562.
[6] Vandenameele P, der Perre L V, Gyselinckx B, et al. A single-carrier frequency domain SDMA basestation[J].IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, 6:3714-3717. DOI:10.1109/ICA SSP.2 00 0.860209.
[7] Coon J, Armour S, Beach M, et al. Adaptive frequency-domain equalization for single-carrier multiple-input multiple-output wireless transmissions[J].IEEE Transactions on Signal Processing, 2005, 53(8):3247-3256. DOI:10.110 9/TS P.2005.851155.
[8] Mario S M, Rui D, Joao G, et al. A low complexity channel estimation and detection for massive MIMO using SC-FDE[J].Telecom, 2020, 1(1):3-17. DOI:10.3390/telecom1010002.
[9] Dinis R, Montezuma P. Iterative receiver based on the EGC for massive MIMO schemes using SC-FDE modulations[J].IEEE Electronics Letters, 2016, 52(11):972-974. DOI:10.1049/el.2016.0012.
[10] Chen J, Zhang Z, Lu H, et al. An intra iterative interference cancellation detector for large scale MIMO communications based on convex optimization[J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2016, 63(11):2062-2072. DOI:10.1109/TCSI.2016.2598060.
[11] Dong C, Lin J, Niu K, et al. Block-iterative decision feedback equalizer with noise prediction for single-carrier MIMO transmission[J].IEEE Transactions on Vehicular Technology, 2012, 61(8):3772-3776. DOI:10.1109/TVT.2012.2207750.
[12] Guvensen G M, Zgur Yilmaz A O. A general framework for optimum iterative blockwise equalization of single carrier MIMO systems and asymptotic performance[J]. IEEE Transactions on Communications, 2013, 61(2):609-619. DOI:10.1109/TCOMM.2013.020413.110759.
[13] Molina F, lvarez J S A. Average per performance metrics of iterative successive interference cancellation[J]. IEEE Wireless Communications Letters, 2020, 9(1):74-77. DOI:10.1109/LWC.2019.2941879.


Biographies: He Bo(1976—), female, Ph.D. candidate; Cao Luhui(corresponding author), female, senior engineer, caolh@sdu.edu.cn.
Foundation items: The National Natural Science Foundation of Shandong Province(No. 62071276), the Key Research and Development Project of the Ministry of Science and Technology(No. 2020YFC0833203).
Citation: He Bo, Du Yan, Cao Luhui, et al. An iterative reaching-diversity bound detector for MIMO SC-FDE systems[J].Journal of Southeast University(English Edition), 2023, 39(1):62-67.DOI:10.3969/j.issn.1003-7985.2023.01.007.
Last Update: 2023-03-20