|Table of Contents|

[1] Fan Xiangning**, Dou Huaiyu, Bi Guangguo,. A Reduced Search Soft-Output Detection Algorithmand Its Application to Turbo-Equalization* [J]. Journal of Southeast University (English Edition), 2001, 17 (1): 8-12. [doi:10.3969/j.issn.1003-7985.2001.01.003]
Copy

A Reduced Search Soft-Output Detection Algorithmand Its Application to Turbo-Equalization*()
一种减少搜索的软输出检测算法 及其在Turbo均衡中的应用
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
17
Issue:
2001 1
Page:
8-12
Research Field:
Information and Communication Engineering
Publishing date:
2001-06-30

Info

Title:
A Reduced Search Soft-Output Detection Algorithmand Its Application to Turbo-Equalization*
一种减少搜索的软输出检测算法 及其在Turbo均衡中的应用
Author(s):
Fan Xiangning** Dou Huaiyu Bi Guangguo
Department of Radio Engineering, Southeast University, Nanjing 210096, China
樊祥宁 窦怀宇 毕光国
东南大学无线电工程系, 南京 210096
Keywords:
MAP algorithm Lee algorithm soft-output M-algorithm turbo-equalization
MAP算法 Lee算法 软输出M算法 Turbo均衡
PACS:
TN911.5
DOI:
10.3969/j.issn.1003-7985.2001.01.003
Abstract:
To decrease the complexity of MAP algorithm, reduced-state or reduced-search techniques can be applied. In this paper we propose a reduced search soft-output detection algorithm fully based on the principle of M-algorithm for turbo-equalization, which is a suboptimum version of the Lee algorithm. This algorithm is called soft-output M-algorithm(denoted as SO-M-algorithm), which applies the M-strategy to both the forward recursion and the extended forward recursion of the Lee algorithm. Computer simulation results show that, by properly selecting and adjusting the breadth parameter and depth parameter during the iteration of turbo-equalization, this algorithm can obtain good performance and complexity trade-off.
为了减少MAP算法的复杂度, 可以采用减状态或减搜索技术.本文提出了一种完全基于M算法原理、应用于Turbo均衡的减少搜索的软输出检测算法, 它是一种次最佳的Lee算法.该算法称为软输出M算法(SO-M-算法), 它同时在Lee算法的前向迭代及扩展前向迭代中采用了M策略.计算机仿真结果表明, 通过适当选择和调整Turbo均衡迭代过程中算法的广度参数和深度参数, 该算法可获得较好的性能与复杂度的折衷.

References:

[1] Jr. G. D. Forney, Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference, IEEE Transactions on Information Theory, vol. IT-18, no.3, pp.363-378, 1972
[2] Jr.G.D.Forner, The Viterbi algorithm, In:Proceeding of the IEEE, vol.61, no.3, pp.268-278, 1973
[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Transactions on Information Theory, vol. IT-20, no.2, pp.284-287, 1974
[4] L. Lee, Real-time minimal-bit-error probability decoding of convolutional code, IEEE Transactions on Communications, vol. COM-22, no.2, pp. 146-151, 1974
[5] C. Douillard, M. Jézéquel, and C. Berrou, Iterative correction of intersymbol interference: Turbo-equalization, European Transactions on Telecommunications, vol.6, no.5, pp.507-511, 1995
[6] M.V. Eyuboglu, and S.U.H. Qureshi, Reduced-state sequence estimation with set partitioning and decision feedback, IEEE Transactions on Communications, vol. COM-36, no.1, pp.13-20, 1988
[7] J.B. Anderson, Sequential coding algorithms: a survey and cost analysis, IEEE Transactions on Communications, vol. COM-32, no.2, pp.169-176, 1984
[8] P. Hoeher, TCM on frequency-selected fading channels: a comparison of soft-output probabilistic equalizers, In: Proceeding of the IEEE GLOBLECOM’90, San Diego, pp. 401.4.1-401.4.6, 1990
[9] V. Franz, and J. B. Anderson, Concatenated decoding with a reduced-search BCJR algorithm, IEEE Journal of Selected Areas on Communications, vol.16, no.2, pp.186-195, 1998
[10] G. Ungerboeck, Channel coding with multilevel/phase signals, IEEE Transactions on Information Theory, vol. IT-28, no.1, pp.55-67, 1982

Memo

Memo:
* The project supported by the National Natural Science Foundation of China(69882004).
** Born in 1964, male, doctor, associate professor.
Last Update: 2001-03-20