|Table of Contents|

[1] Shi Ping*, Ji Guojun,. Slodkowski Joint Spectrum and Tensor Product [J]. Journal of Southeast University (English Edition), 2001, 17 (1): 79-81. [doi:10.3969/j.issn.1003-7985.2001.01.019]
Copy

Slodkowski Joint Spectrum and Tensor Product()
Slodkowski 联合谱和张量积
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
17
Issue:
2001 1
Page:
79-81
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2001-06-30

Info

Title:
Slodkowski Joint Spectrum and Tensor Product
Slodkowski 联合谱和张量积
Author(s):
Shi Ping1*, Ji Guojun2
1Department of Teaching Basic Courses, Nanjing University of Economics, Nanjing 210003, China
2Department of Applied Mathematics, Southeast University, Naojing 210096, China
史平1, 计国君2
1南京经济学院基础教学部, 南京 210003; 2东南大学应用数学系, 南京 210096
Keywords:
operators joint spectrum tensor product Koszul complex
算子 联合谱 张量积 Koszul 复形
PACS:
O177.1
DOI:
10.3969/j.issn.1003-7985.2001.01.019
Abstract:
Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about tensor product.
Slodkowski联合谱类似于Taylor联合谱, 它具有更重要的理论和应用意义. 本文我们刻画了Slodkowski联合谱, 同时推广了关于张量积的几个结果.

References:

[1] Z.Slodkowski, An infinite family of joint spectra, Studia. Math., vol. 61, no.3, pp. 239-255, 1977
[2] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., vol.6, no.2, pp. 172-191, 1970
[3] R. E. Curto, Fredholm and invertible n-tuples of operators, the deformation problem, Trans. Amer. Math. Soc., vol. 266, no.1, pp. 129-157, 1981
[4] Z. Ceausescu, and F. H.Vasilescu, Tensor products and Tay-lor’s joint spectrum, Studia. Math., vol. 62, no.3, pp. 305-311, 1978

Memo

Memo:
* Born in 1963, male, master.
Last Update: 2001-03-20