|Table of Contents|

[1] Wu Bing*, Zhao Lindu,. Web Mining Model Based on Rough Set Theory [J]. Journal of Southeast University (English Edition), 2002, 18 (1): 54-58. [doi:10.3969/j.issn.1003-7985.2002.01.010]
Copy

Web Mining Model Based on Rough Set Theory()
基于粗糙集理论的Web挖掘模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 1
Page:
54-58
Research Field:
Computer Science and Engineering
Publishing date:
2002-03-30

Info

Title:
Web Mining Model Based on Rough Set Theory
基于粗糙集理论的Web挖掘模型
Author(s):
Wu Bing* Zhao Lindu
School of Economics and Management, Southeast University, Nanjing 210096, China
吴冰 赵林度
东南大学经济管理学院, 南京 210096
Keywords:
Web mining rough sets electronic commerce knowledge reasoning Web log
Web挖掘 粗糙集 知识推理 电子商务 Web日志
PACS:
TP311.131
DOI:
10.3969/j.issn.1003-7985.2002.01.010
Abstract:
Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision-making for electronic commerce(EC)operation and management. Because of ambiguous and abundance of the Web log file, the least decision-making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision-making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method.
在电子商务网站的Web日志中, 蕴含着大量有价值的信息.利用Web挖掘技术能够有效获取这些信息, 这将有助于提高电子商务运营管理的经营决策.在Web挖掘研究过程中, 结合Web日志具有的数据量大、不确定等特点, 提出了一种基于粗集理论的最小化决策模型.运用这一模型, 通过对决策表进行知识简化, 可以导出简化决策表, 最后获得最小解.电子商务系统的决策人员就可以依据得到的最小解, 为提供个性化服务进行决策.应用基于粗集理论的数据挖掘方法, 对Web日志进行挖掘, 已经成为当前研究的热点问题.

References:

[1] Zhao Lindu. Theory and practice of electronic commerce[M]. Beijing: People’s Post & Telecommunications Publishing House, 2001.20-24.(in Chinese)
[2] Chan Chien-Chung. A rough set approach to attribute generalization in data mining[J]. Journal of Information Sciences, 1998(107):169-176.
[3] Griffin G, Chen Z. Rough set extension of Tcl for data mining[J]. Knowledge-Based System, 1998(11):249-253.
[4] Wong S K M. Rough sets: probabilistic versus deterministic approach[J]. Int J Man-Machine studies, 1998(29):81-95.
[5] Li Yongmin, Zhu Shanjun, Cheng Xianghui, et al. Data mining model based on rough set theory[J]. Journal of Tsinghua University, 1999, 39(1):110-113.(in Chinese)
[6] Han Jiawei, Kamber Micheline. Data Mining Concepts and Techniques[M]. Kaufmann Publishers, 2001.435-443.
[7] Walczak B, Massart D L. Rough set theory[J]. Chemo metrics and Intelligent Laboratory Systems, 1999(47):1-16.
[8] Zeng Huanglin. Rough set theory and application[J]. Journal of Sichuan institute of light industry and chemical technology, 1996, 9(2):1-7.(in Chinese)
[9] Xie Danxia, Li Xiaodong. Data mining technology applying on Web and tool designing. Computer Application, 2001, 21(2):42-44.(in Chinese).
[10] Zhou Xianchun, Xie Zhong, Zhou Yanhui. EC and Web data mining[J]. Computer Application, 2001, 21(5):21-23.(in Chinese)

Memo

Memo:
* Born in 1974, female, graduate.
Last Update: 2002-03-20