|Table of Contents|

[1] Deng Xiaolong**, Yuan Chunhua, Ju Rui, Huang Hongbin, et al. On-Off Intermittency Route to Chaos Synchronizationand Spatial Periodic Synchronization of Chaosin Coupled Arrays of Chaotic Systems* [J]. Journal of Southeast University (English Edition), 2002, 18 (1): 95-98. [doi:10.3969/j.issn.1003-7985.2002.01.019]
Copy

On-Off Intermittency Route to Chaos Synchronizationand Spatial Periodic Synchronization of Chaosin Coupled Arrays of Chaotic Systems*()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 1
Page:
95-98
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2002-03-30

Info

Title:
On-Off Intermittency Route to Chaos Synchronizationand Spatial Periodic Synchronization of Chaosin Coupled Arrays of Chaotic Systems*
Author(s):
Deng Xiaolong** Yuan Chunhua Ju Rui Huang Hongbin
Department of Physics, Southeast University, Nanjing 210096, China
Keywords:
Lorenz oscillator chaos synchronization intermittency chaos spatio-periodic chaos
PACS:
O41
DOI:
10.3969/j.issn.1003-7985.2002.01.019
Abstract:
Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on-off intermittent synchronization with a power-law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.

References:

[1] Fujisaka H, Yamada T. Stability theory of synchronization motion in coupled-oscillator systems[J]. Prog Theor Phys, 1983, 69(1):32-47.
[2] Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990, 64(8):821-824.
[3] Heagy J F, Carroll T L, Pecora L M. Synchronous chaos in coupled oscillator systems[J]. Phys Rev E, 1994, 50(3):1874-1885.
[4] Güémz J, Matías M A. Modified method for synchronization and cascading chaotic systems[J]. Phys Rev E, 1995, 52(3):R2145-2148.
[5] Matías M A, Güémz J. Transient periodic rotating waves and fast propagation of synchronization in linear arrays of chaotic systems[J]. Phys Rev Lett, 1998, 81(19):4124-4127.
[6] Sánchez E, Matías M A. Transition to chaotic rotating waves in arrays of coupled Lorenz oscillators[J]. Int J Bifurcation Chaos, 1999, 9(12):2335-2343.
[7] Baker G L, Blackburn J A, Smith H J T. Intermittent synchronization in a pair of coupled chaotic pendula[J]. Phys Rev Lett, 1998, 81(3), 554-557.
[8] Heagy J F, Platt N, Hammel S M. Characterization of on-off intermittency[J]. Phys Rev E, 1994, 49(2):1140-1150.
[9] Huang Hongbin, Deng Xiaolong, Yuan Chunhua, Ju Rui. On-off intermittency route to chaos synchronization in circular arrays of chaotic systems[J]. Submitted to Phys Lett A.
[10] Schuster H G. Deterministic Chaos[M]. 2nd ed. New York: VCH, 1988.79-102.
[11] Deng Xiaolong, Huang Hongbin. Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems[J]. Accepted by Phys Rev E.

Memo

Memo:
* The project supported by the Foundation for University Key Teacher by the Ministry of Education of China(GG-0702-10286-1562).
** Born in 1977, male, graduate.
Last Update: 2002-03-20