|Table of Contents|

[1] Wang Hongshan, Zhang Chengjian,. Stability analysis for nonlinear multi-variabledelay perturbation problems [J]. Journal of Southeast University (English Edition), 2003, 19 (2): 193-196. [doi:10.3969/j.issn.1003-7985.2003.02.020]
Copy

Stability analysis for nonlinear multi-variabledelay perturbation problems()
非线性多变延迟奇异摄动问题的稳定性分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 2
Page:
193-196
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-06-30

Info

Title:
Stability analysis for nonlinear multi-variabledelay perturbation problems
非线性多变延迟奇异摄动问题的稳定性分析
Author(s):
Wang Hongshan1, Zhang Chengjian2
1Department of Mathematics, Wuhan Institute of Science and Technology, Wuhan 430073, China
2Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China
王洪山, 张诚坚
武汉科技学院数学系, 武汉 430073) (华中科技大学数学系, 武汉 430074
Keywords:
multi-variable delay perturbation problems Euler method stability interpolation
多变时滞奇异摄动问题 Euler方法 稳定性 插值
PACS:
O241.3
DOI:
10.3969/j.issn.1003-7985.2003.02.020
Abstract:
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems(MVDPP)of the form x′(t)=f(x(t), x(t-τ1(t)), …, x(t-τm(t)), y(t), y(t-τ1(t)), …, y(t-τm(t))), and εy′(t)=g(x(t), x(t-τ1(t)), …, x(t-τm(t)), y(t), y(t-τ1(t)), …, y(t-τm(t))), where 0<ε≪1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
讨论了形如x′(t)=f(x(t), x(t-τ1(t)), …, x(t-τm(t)), y(t), y(t-τ1(t)), …, y(t-τm(t)))和εy′(t)=g(x(t), x(t-τ1(t)), …, x(t-τm(t)), y(t), y(t-τ1(t)), …, y(t-τm(t)))(0<ε

References:

[1] Gan Siqing, Sun Geng. Error of Runge-Kutta methods for singular perturbation problems with delays [J]. Mathematica Numerica Sinica, 2001, 123(3):343-356.(in Chinese)
[2] Hairer E, Wanner G. Solving ordinary differential equations Ⅱ[M]. Berlin: Springer, 1991.
[3] Buhmann M D, Iserles A. Numerical analysis of delay differential equations with variable delay [J]. Ann Numer Math, 1994, 1(1):133-152.
[4] Torelli L. A sufficient condition for GPN-stability for delay differential equations[J]. Numer Math, 1991, 59(3): 311-320.
[5] Zhang Chengjian, Liao Xiaoxin. Contractivity of Runge-Kutta methods for multidelay differential equations[J]. Acta Mathematica Scientia, 2001, 21(2):252-258.(in Chinese)

Memo

Memo:
Biography: Wang Hongshan(1974—), male, master.
Last Update: 2003-06-20