|Table of Contents|

[1] Zhu Xiaoqin, Chen Lingen, Sun Fengrui, et al. The optimal performance of a generalized Carnot cyclefor a generalized heat transfer law [J]. Journal of Southeast University (English Edition), 2003, 19 (3): 275-279. [doi:10.3969/j.issn.1003-7985.2003.03.014]
Copy

The optimal performance of a generalized Carnot cyclefor a generalized heat transfer law()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 3
Page:
275-279
Research Field:
Energy and Power Engineering
Publishing date:
2003-09-30

Info

Title:
The optimal performance of a generalized Carnot cyclefor a generalized heat transfer law
Author(s):
Zhu Xiaoqin1 2 Chen Lingen1 Sun Fengrui1
1Faculty 306, Naval University of Engineering, Wuhan 430033, China
2Huaiyin Teachers College, Huaiyin 223001, China
Keywords:
finite heat source optimal configuration generalized Carnot cycle
PACS:
TK12
DOI:
10.3969/j.issn.1003-7985.2003.03.014
Abstract:
The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝(ΔT)m, is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed. The results can provide some theoretical guidance for the design a practical engine.

References:

[1] Novikov I I. The efficiency of atomic power stations(a review)[J]. Atommaya Energiya, 1957, 3(11): 409.
[2] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output[J]. Am J Phys, 1975, 43(1): 22-24.
[3] Bejan A. Entropy generation through heat and fluid flow[M]. New York: Wiley, 1982.
[4] Andresen B. Finite-time thermodynamics[M]. Physics Laboratory, University of Copenhagen, 1983.
[5] Bejan A. Entropy generation minimization[M]. Boca Raton: CRC Press, 1996.
[6] Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic optimization of finite time process[M]. Chichester: Wiley, 1999.
[7] Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization of entropy generation minimization of energy systems[J]. J Non-Equilib Thermodyn, 1999, 24(4): 327-359.
[8] Wu C, Chen L G, Chen J. Recent advances in finite-time thermodynamics. New York: Nova Science Publishers, 1999.
[9] Ondrechen M J, Andresen B, Mozurkewich M, et al. Maximum work from a finite reservoir by sequential Carnot cycles[J]. Am J Phys, 1981, 49(7): 681-685.
[10] Yan Z J. Thermal efficiency of a Carnot engine at the maximum power output with finite thermal capacity heat reservoir [J]. Chinese J Engng Thermophys, 1984, 5(2): 125-131.(in Chinese)
[11] Grazzini G. Work from irreversible heat engines [J]. Energy, The Int J, 1991, 16(4): 747-755.
[12] Lee W Y, Kin S S. An analytical formula for the estimation a Rankine cycle heat engine efficiency at maximum power [J]. Int J Energy Res, 1991, 15(3): 149-159.
[13] Ibrahim O M, Klein S A, Mitchell J W. Optimum heat power cycles for specified boundary conditions [J]. Trans ASME J Engng Gas Turbine Power, 1991, 113(4): 514-521.
[14] Chen L G, Ni N, Cheng G, et al. Performance analysis for a real closed regenerated Brayton cycle via methods of finite time thermodynamics [J]. Int J Ambient Energy, 1999, 20(2): 95-104.
[15] Chen L G, Zheng J, Sun F R, et al. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle [J]. J Phys D: Appl Phys, 2001, 34(11):1727-1739.
[16] Rubin M H. Optimal configuration of a class of irreversible heat engines I [J]. Phys Rev A, 1979, 19(3): 1272-1276.
[17] Ondrechen M J, Rubin M H, Band Y B. The generalized Carnot cycles: a working fluid operating in finite-time between finite heat sources and sinks [J]. J Chem Phys, 1983, 78(7): 4721-4727.
[18] Yan Z J, Chen L G. Optimal performance of an endoreversible cycle operating between a heat source and sink of finite capacities [J]. J Phys A: Math Gen, 1997, 30(23): 8119-8127.
[19] Yan Z J, Chen J. Optimal performance of a generalized Carnot cycle for another linear heat transfer law [J]. J Chem Phys, 1990, 92(3): 1994-1998.
[20] Chen L G, Zhou S, Sun F R, et al. Optimal configuration and performance of heat engines with heat leak and finite heat capacity [J]. Open Systems & Information Dynamics, 2002, 9(1): 85-96.
[21] Gutowicz-Kruain D, Procaccia J, Ross J. On the efficiency of rate process: power and efficiency of heat engine [J]. J Chem Phys, 1978, 69(9): 3898-3906.
[22] O’Sullivan C T. Newton’s law of cooling — a critical assessment [J]. Am J Phys, 1990, 58(9): 956-960.
[23] Angulo-Brown F, Paez-Hernandez R. Endoreversible thermal cycle with a nonlinear heat transfer law [J]. J Appl Phys, 1993, 74(4): 2216-2219.
[24] Chen W, Sun F R, Cheng S, et al. Study on optimal performance and working temperature of endoreversible forward and reverse Carnot cycles [J]. Int J Energy Res, 1995, 19(9): 751-759.
[25] Chen L G, Sun F R, Wu C. Influence of heat transfer law on the performance of a Carnot engine [J]. Appl Thermal Engineering, 1997, 17(3): 277-282.

Memo

Memo:
Biographies: Zhu Xiaoqin(1964—), female, graduate; Chen Lingen(corresponding author), male, doctor, professor, lingenchen@hotmail.com.
Last Update: 2003-09-20