[1] Novikov I I. The efficiency of atomic power stations(a review)[J]. Atommaya Energiya, 1957, 3(11): 409.
[2] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output[J]. Am J Phys, 1975, 43(1): 22-24.
[3] Bejan A. Entropy generation through heat and fluid flow[M]. New York: Wiley, 1982.
[4] Andresen B. Finite-time thermodynamics[M]. Physics Laboratory, University of Copenhagen, 1983.
[5] Bejan A. Entropy generation minimization[M]. Boca Raton: CRC Press, 1996.
[6] Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic optimization of finite time process[M]. Chichester: Wiley, 1999.
[7] Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization of entropy generation minimization of energy systems[J]. J Non-Equilib Thermodyn, 1999, 24(4): 327-359.
[8] Wu C, Chen L G, Chen J. Recent advances in finite-time thermodynamics. New York: Nova Science Publishers, 1999.
[9] Ondrechen M J, Andresen B, Mozurkewich M, et al. Maximum work from a finite reservoir by sequential Carnot cycles[J]. Am J Phys, 1981, 49(7): 681-685.
[10] Yan Z J. Thermal efficiency of a Carnot engine at the maximum power output with finite thermal capacity heat reservoir [J]. Chinese J Engng Thermophys, 1984, 5(2): 125-131.(in Chinese)
[11] Grazzini G. Work from irreversible heat engines [J]. Energy, The Int J, 1991, 16(4): 747-755.
[12] Lee W Y, Kin S S. An analytical formula for the estimation a Rankine cycle heat engine efficiency at maximum power [J]. Int J Energy Res, 1991, 15(3): 149-159.
[13] Ibrahim O M, Klein S A, Mitchell J W. Optimum heat power cycles for specified boundary conditions [J]. Trans ASME J Engng Gas Turbine Power, 1991, 113(4): 514-521.
[14] Chen L G, Ni N, Cheng G, et al. Performance analysis for a real closed regenerated Brayton cycle via methods of finite time thermodynamics [J]. Int J Ambient Energy, 1999, 20(2): 95-104.
[15] Chen L G, Zheng J, Sun F R, et al. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle [J]. J Phys D: Appl Phys, 2001, 34(11):1727-1739.
[16] Rubin M H. Optimal configuration of a class of irreversible heat engines I [J]. Phys Rev A, 1979, 19(3): 1272-1276.
[17] Ondrechen M J, Rubin M H, Band Y B. The generalized Carnot cycles: a working fluid operating in finite-time between finite heat sources and sinks [J]. J Chem Phys, 1983, 78(7): 4721-4727.
[18] Yan Z J, Chen L G. Optimal performance of an endoreversible cycle operating between a heat source and sink of finite capacities [J]. J Phys A: Math Gen, 1997, 30(23): 8119-8127.
[19] Yan Z J, Chen J. Optimal performance of a generalized Carnot cycle for another linear heat transfer law [J]. J Chem Phys, 1990, 92(3): 1994-1998.
[20] Chen L G, Zhou S, Sun F R, et al. Optimal configuration and performance of heat engines with heat leak and finite heat capacity [J]. Open Systems & Information Dynamics, 2002, 9(1): 85-96.
[21] Gutowicz-Kruain D, Procaccia J, Ross J. On the efficiency of rate process: power and efficiency of heat engine [J]. J Chem Phys, 1978, 69(9): 3898-3906.
[22] O’Sullivan C T. Newton’s law of cooling — a critical assessment [J]. Am J Phys, 1990, 58(9): 956-960.
[23] Angulo-Brown F, Paez-Hernandez R. Endoreversible thermal cycle with a nonlinear heat transfer law [J]. J Appl Phys, 1993, 74(4): 2216-2219.
[24] Chen W, Sun F R, Cheng S, et al. Study on optimal performance and working temperature of endoreversible forward and reverse Carnot cycles [J]. Int J Energy Res, 1995, 19(9): 751-759.
[25] Chen L G, Sun F R, Wu C. Influence of heat transfer law on the performance of a Carnot engine [J]. Appl Thermal Engineering, 1997, 17(3): 277-282.