|Table of Contents|

[1] Guo Guangquan,. The smash products of entwining structure [J]. Journal of Southeast University (English Edition), 2003, 19 (3): 297-300. [doi:10.3969/j.issn.1003-7985.2003.03.019]
Copy

The smash products of entwining structure()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 3
Page:
297-300
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-09-30

Info

Title:
The smash products of entwining structure
Author(s):
Guo Guangquan
Department of Mathematics, Nanjing Xiaozhuang College, Nanjing 210017, China
Keywords:
coalgebra entwining structure smash product
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2003.03.019
Abstract:
Let k be a commutative ring, C a projective k-coalgebra. The smash products of entwining structure (A, C)ψ are discussed. When the map ψ is a bijective, and C is a finitely generated k-module, a version of the Ulbrich theorem for coalgebras C is given.

References:

[1] Brzezinski T. Module and coalgebra galois extensions [J]. Journal of Algebra, 1999, 215(1): 290-317.
[2] Brzezinski T. Crossed products by a coalgebra [J]. Comm Algebra, 1997, 25(10): 3551-3575.
[3] Brzezinski T, M Hajac P. Coalgebra extensions and algebra coextensions of galois type [J]. Comm Algebra, 1999, 27(4): 1347-1376.
[4] Brzezinski T. Frobenius properties and Maschke-type theorems for entwining modules [J]. Proc Amer Mah Soc, 1999, 128(5): 2261-2270.
[5] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.10-12.
[6] Koppinen M. Variations on the smash product with applications to group-graded rings [J]. J Pure Appl Algebra, 1989, 59(1): 125-150.
[7] Anderson F W, Fuller K R. Rings and categories of modules [M]. New York: Springer-Verlag, 1974. 242-243.
[8] Ulbrich K H. Smash products and comodules of linear maps [J]. Tsukuba J Math, 1990, 14(2): 371-378.

Memo

Memo:
Biography: Guo Guangquan(1954—), male, associate professor, guogq1954@yahoo.com.cn.
Last Update: 2003-09-20