|Table of Contents|

[1] Huang Bin, Hu Weiqun,. Finite element method of the eigenvaluesof Sturm-Liouville’s problem [J]. Journal of Southeast University (English Edition), 2003, 19 (4): 437-442. [doi:10.3969/j.issn.1003-7985.2003.04.028]
Copy

Finite element method of the eigenvaluesof Sturm-Liouville’s problem()
Sturm-Liouville问题特征值的有限元方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 4
Page:
437-442
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-12-30

Info

Title:
Finite element method of the eigenvaluesof Sturm-Liouville’s problem
Sturm-Liouville问题特征值的有限元方法
Author(s):
Huang Bin1 Hu Weiqun2
1Department of Mechatronic Engineering, Jinling Institute of Technology, Nanjing 210038, China
2Information College, Nanjing Forestry University, Nanjing 210037, China
黄滨1 胡卫群2
1金陵科技学院机电工程系, 南京 210038; 2南京林业大学信息学院, 南京 210037
Keywords:
Sturm-Liouville’s problem eigenvalue eigenfunction finite element method
Sturm-Liouville问题 特征值 特征函数 有限元方法
PACS:
O175.1
DOI:
10.3969/j.issn.1003-7985.2003.04.028
Abstract:
This paper considers the finite element method of the approximate value of eigenvalues of Sturm-Liouville’s problem. The proof of our main result is based on the variational method. Linear interpolating functions are made by interpolation method, the problem of the approximate value of eigenvalues becomes the calculation of eigenvlaues of a matrix. Then the finite element method of the approximate value of the eigenvalues is obtained, and accuracy of(n-1)-th approximate value is estimated by n-th approximate value. When n is increased, the accuracy of eigenvalue λk is increased. When n is appropriately selected, the accuracy of λk we need is obtained. This finite element method is significant both in applications and in theory.
本文构建了计算Sturm-Liouville问题特征值的有限元方法.主要结果的证明运用了变分法.通过构造适当的线性插值函数, 将微分方程特征值的近似计算问题离散化为矩阵特征值计算问题.从而获得了微分方程特征值的近似值的有限元方法, 而且可以用第n次近似值来估计第n-1次的近似值的精确度. 随着n的增大, 特征值λk的精确度逐步提高, 只要适当选取n, 就可以求得所要求精确度的特征值的近似值, 这个算法具有广泛的实用价值和理论价值.

References:

[1] Hile G N, Protter M H. Inequalities for eigenvalue of the Laplacian [J]. Indiana Univ Math J, 1980, 29(4): 523-538.
[2] Hile G N, Yeh R Z. Inequalities for eigenvalue of the biharmonic operator [J]. Pacific J Math, 1984, 112(1): 115-133.
[3] Chen Z C, Qian C L. Estimates for discrete spectrum of Laplacian operator with any order [J]. J China Univ Sci Tech, 1990, 20(3):259-265.
[4] Protter M H. Can one hear the shape of a drum?[J]. SIAM Rev, 1987, 29(2):185-197.
[5] Zhen W G, Qian C L. Estimates for eigenvalue of Sturm-Liouville’s problem [J]. J Math Tech, 1992, 8(1):28-32.(in Chinese)
[6] Huang Bin. One computational method of the eigenvalues of the horizontal across vibration problem of beam [J]. Journal of Southeast University(English Edition), 2002, 18(4):277-282.

Memo

Memo:
Biography: Huang Bin(1958—), male, lecturer, binhuang@public1.ptt.js.cn.
Last Update: 2003-12-20