[1] Wold H. Nonlinear estimation by iterative least squares procedures [A]. In: David F, ed. Research Papers in Statistics [C]. New York: John Wiley & Sons, 1966.411-444.
[2] Werbos P J. Beyond regression: new tools for pre ̄diction and analysis in the behavioral science [D]. Cambridge, MA: Harvard University, 1974.
[3] Rumelhart D, Hinton G, Williams R. Parallel dis ̄tri ̄buted processing [M]. Cambridge, MA: MIT Press, 1986.
[4] Hornik K M, Stinchcombe M, White H. Multilayer feed-forward neural networks are universal approximators [J]. Neural Networks, 1989, 2(2): 359-366.
[5] Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computers Chem Engng, 1992, 16(4): 379-391.
[6] Holcomb T R, Morari M. PLS/neural networks [J]. Computers Chem Engng, 1992, 16(4): 393-411.
[7] Huang K, Chen F Q, Lü D W. Artificial neural network-aided design of a multi-component catalyst for methane oxidative coupling [J]. Appl Catal A, 2001, 219: 61-68.
[8] Huang K. Research on computer-aided catalyst design and an application in multi-component catalyst design of methane oxidative coupling [D]. Hangzhou: Department of Chemical Engineering, Zhejiang University, 2001.
[9] Geladi P, Kowalski B R. An example of 2-block pre ̄dic ̄tive partial least-squares regression with simulated data [J]. Analyt Chim Acta, 1986, 185: 19-32.