|Table of Contents|

[1] Song Hongxue,. Asymptotic upper bounds for wheel:complete graph Ramsey numbers [J]. Journal of Southeast University (English Edition), 2004, 20 (1): 126-129. [doi:10.3969/j.issn.1003-7985.2004.01.026]
Copy

Asymptotic upper bounds for wheel:complete graph Ramsey numbers()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 1
Page:
126-129
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2004-03-30

Info

Title:
Asymptotic upper bounds for wheel:complete graph Ramsey numbers
Author(s):
Song Hongxue
College of Sciences, Hohai University, Nanjing 210098, China
Keywords:
Ramsey numbers wheels independent number complete graphs
PACS:
O29
DOI:
10.3969/j.issn.1003-7985.2004.01.026
Abstract:
It is shown that r(Wm, Kn)≤(1+o(1))C1(n/(logn))</sup>(2m-2)/(m-2) for fixed even m≥4 and n→∞, and r(Wm, Kn)≤(1+o(1))C2((n(2m)/(m+1))/(logn))</sup>(m+1)/(m-1) for fixed odd m≥5 and n→∞, where C1=C1(m)&gt;0 and C2=C2(m)&gt;0, in particular, C2=12 if m=5. It is obtained by the analytic method and using the function fm(x)=∫10((1-t)<sup>1/mdt)/(m+(x-m)t), x≥0, m≥1 on the base of the asymptotic upper bounds for r(Cm, Kn) which were given by Caro, et al. Also, c(n/(logn))5/2≤r(K4, Kn)≤(1+o(1))(n3)/((logn)2)(as n→∞). Moreover, we give r(Kk+Cm, Kn)≤(1+o(1))C5(m)(n/(logn))</sup>k+m/(m-2) for fixed even m≥4 and r(Kk+Cm, Kn)≤(1+o(1))C6(m)((n</sup>(2+(k+1)(m-1))/(2+k(m-1)))/(logn))</sup>k+2/(m-1) for fixed odd m≥3(as n→∞).

References:

[1] Chvátal V. Tree-complete graph Ramsey numbers [J]. Journal of Graph Theory, 1977, 1: 93.
[2] Li Yusheng, Zang Wenan. The Ramsey number involving large dense graph and bipartite Turán number [J]. J Combin Theory, Ser B, 2003, 87: 280-288.
[3] Spencer J. Asymptotic lower bounds for Ramsey functions [J]. Discrete Mathematics, 1977, 20(1): 69-76.
[4] Caro Yair, Li Yusheng, Rousseau C C, et al. Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers [J]. Discrete Mathematics, 2000, 220(2): 51-56.
[5] Ajtai M, Komlós J, Szemerédi E. A note on Ramsey numbers [J]. J Combin Theory, Ser A, 1980, 29(3): 354-360.
[6] Kim J H. The Ramsey number r(3, t) has order of magnitude t2/2logt [J]. Random Structure and Algorithms, 1995, 7: 173-207.
[7] Li Yusheng, Zang Wenan. The independence number of graphs with a Forbidden Cycle and Ramsey Numbers [J]. J Combin Optimization, 2003, 7: 353-359.
[8] Li Yusheng, Rousseau C C. On book-complete graph Ramsey numbers [J]. J Combin Theory, Ser B, 1996, 68(1): 36-44.
[9] Li Yusheng, Rousseau C C, Zang Wenan. Asymptotic upper bounds for Ramsey functions [J]. Graph and Combinatorics, 2001, 17: 123-128.

Memo

Memo:
Biography: Song Hongxue(1977—), female, graduate, songhongxue@sohu.com.
Last Update: 2004-03-20