|Table of Contents|

[1] Zhang Changyou, Zhu Changming, Lin Zhongqin,. Suppression strategy for parametrically excitedlateral vibration of mass-loaded string [J]. Journal of Southeast University (English Edition), 2004, 20 (2): 165-169. [doi:10.3969/j.issn.1003-7985.2004.02.008]
Copy

Suppression strategy for parametrically excitedlateral vibration of mass-loaded string()
载重绳索参数激励横向振动的减振策略
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 2
Page:
165-169
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2004-06-30

Info

Title:
Suppression strategy for parametrically excitedlateral vibration of mass-loaded string
载重绳索参数激励横向振动的减振策略
Author(s):
Zhang Changyou Zhu Changming Lin Zhongqin
College of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200030, China
张长友 朱昌明 林忠钦
上海交通大学机械与动力工程学院, 上海 200030
Keywords:
mass-loaded string parametric resonance vibration absorber
载重绳索 参数共振 减振器
PACS:
O322;TM726.4
DOI:
10.3969/j.issn.1003-7985.2004.02.008
Abstract:
This paper discusses a simple way to suppress the parametrically excited lateral vibration of a mass-loaded string. Supposing that the mass at the lower end of the string is subjected to a vertical harmonic excitation and neglecting the higher order vibration modes, the equation of motion for the mass-loaded string can be represented by a Mathieu’s equation with cubic nonlinearity. According to the theory of the Mathieu’s equation, in the mass-loaded string system, when the vertical vibration frequency of the mass approaches twice the natural frequency of the string lateral vibration, once the vertical vibration amplitude of the mass exceeds a critical value, the parametric resonance will occur in the string. To avoid the parametric resonance, a vibration absorber, composed of a thin beam and two mass blocks attached at both sides of the beam symmetrically, is proposed to install with the mass to reduce its vertical vibration, and ultimately suppress the lateral vibration of the string. Such a suppression strategy is finally validated by experiments.
论述了一种抑制载重绳索参数激励横向振动的简便方法. 假设绳索底端的质量受到一个垂直简谐激励并忽略载重绳索高阶振型的影响, 载重绳索的运动方程可以用一个带有立方非线性项的Mathieu方程来描述. 根据Mathieu方程的有关理论, 在载重绳索系统中, 当索端质量垂直振动的频率接近绳索横向振动固有频率2倍时, 一旦索端质量垂直振动的幅度超过某个临界数值时, 绳索将产生参数共振. 为了避免这种现象, 建议在索端质量上加装一个减振器以削减索端质量的垂直振动, 进而抑制绳索的横向振动. 实验验证了该减振方案的有效性.

References:

[1] Mote C D Jr. Parametric excitation of an axially moving string [J]. ASME Journal of Applied Mechanics, 1968, 35: 171-172.
[2] Mote C D Jr. Dynamic stability of an axially moving band [J]. Journal of Franklin Institute, 1968, 285: 329-346.
[3] Mote C D Jr. Dynamic stability of axially moving materials [J]. Shock and Vibration Digest, 1972, 4: 2-11.
[4] Huang J S, Fung R F, Lin C H. Dynamic stability of a moving string undergoing three-dimensional vibration [J]. International Journal of Mechanical Science, 1995, 37(2): 145-160.
[5] Fung R F, Huang J S, Yeh J Y. Nonlinear dynamic stability of a moving string by Hamiltonian formulation [J]. Computer and Structure, 1998, 66(5): 597-612.
[6] Sun B N, Wang Z G, Ko J M, et al. Cable parametric oscillation and its control for cable-stayed bridges [A]. In: Proceedings of SPIE — The International Society for Optical Engineering[C]. Newport Beach, CA, 2001. 366-376.
[7] Wei J D, Yang Y F, Che H M. Analysis of the parameter vibrations of the cable in cable-stayed bridge by FEM [J]. Engineering Mechanics, 2000, 17(6): 130-134.
[8] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts, part Ⅰ: dynamic response [J]. Journal of Applied Mechanics, 1999, 66(2): 396-402.
[9] Zhang L, Zu J W. Nonlinear vibration of parametrically excited viscoelastic moving belts, part II: stability analysis [J]. Journal of Applied Mechanics, 1999, 66(2): 403-409.
[10] Terumichi Y, Ohtsuka M, Yoshizawa M, et al. Nonstationary vibrations of a string with time-varying length and a mass-spring system attached at the lower end [J]. Nonlinear Dynamics, 1997, 12(1): 39-35.
[11] Fung R F, Lin J H. Vibration analysis and suppression control of an elevator string actuated by a PM synchronous servo motor [J]. Journal of Sound and Vibration, 1997, 206(3): 399-423.
[12] Zhu W D, Teppo L J. Design and analysis of a scaled model of a high-rise, high-speed elevator [J]. Journal of Sound and Vibration, 2003, 264(3): 707-731.
[13] Nayfeh A H, Mook D T. Nonlinear oscillations [M]. New York: Wiley-Interscience Publisher, 1979.

Memo

Memo:
Biographies: Zhang Changyou(1975—), male, graduate; Zhu Changming(corresponding author), male, professor, zhuchangming@sjtu.edu.cn.
Last Update: 2004-06-20