|Table of Contents|

[1] Wang Zhenbin, Cao Guangyi, Zhu Xinjian,. Identification algorithm for a kind of fractional order system [J]. Journal of Southeast University (English Edition), 2004, 20 (3): 297-302. [doi:10.3969/j.issn.1003-7985.2004.03.007]
Copy

Identification algorithm for a kind of fractional order system()
一类分数阶系统的辨识算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 3
Page:
297-302
Research Field:
Automation
Publishing date:
2004-09-30

Info

Title:
Identification algorithm for a kind of fractional order system
一类分数阶系统的辨识算法
Author(s):
Wang Zhenbin Cao Guangyi Zhu Xinjian
Department of Automation, Shanghai Jiaotong University, Shanghai 200030, China
王振滨 曹广益 朱新坚
上海交通大学自动化系, 上海 200030
Keywords:
fractional order systems state-space representation system identification fractional order Poisson filter least square method instrumental variable method
分数阶系统 状态空间描述 系统辨识 分数阶泊松滤波器 最小二乘法 辅助变量法
PACS:
TP13
DOI:
10.3969/j.issn.1003-7985.2004.03.007
Abstract:
The state-space representation of linear time-invariant(LTI)fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
介绍了分数阶线性定常系统的状态方程描述, 并给出了其稳定性定理的一个证明. 然后给出了线性定常分数阶系统的一个有效辨识算法. 其基本思想是利用分数阶泊松滤波器把分数阶导数和滤波计算合并起来, 只需计算1步就可以得到滤波后的分数导数, 再利用最小二乘法进行系统辨识. 还把辅助变量方法运用到分数阶系统的辨识上, 这样即使系统中存在有色噪声, 仍可以获得参数的无偏估计. 最后给出了一个粘弹性系统的辨识实例, 说明了上述方法的有效性.

References:

[1] Darling R, Newman J. On the short behavior of porous intercalation electrodes [J]. J Electrochem Soc, 1997, 144(9): 3057-3063.
[2] Battaglia J L, Lay L L, Batsale J C, et al. Heat flow estimation through inverted non integer identification models [J]. International Journal of Thermal Science, 2000, 39(3): 374-389.
[3] Caputo M, Mainardi F. A new dissipation model based on memory mechanism [J]. Pure and Applied Geophysics, 1971, 91(8): 134-147.
[4] Bagley R L. Power law and fractional calculus model of viscoelasticity [J]. AIAA Journal, 1989, 27(10): 1412-1417.
[5] Lennart L. System identification-theory for the user. 2nd Ed [M]. Prince Hall PTR, 1999.
[6] Fang Chongzhi, Xiao Deyun. Process identification [M]. Beijing: Tsinghua University Press, 1988. 178-184.(in Chinese)
[7] Bagley R L, Calico R A. Fractional-order state equations for the control of viscoelastic damped structures [J]. J Guidance, Control and Dynamics, 1991, 14(2): 304-311.
[8] Ikeda F, Kawata S. An optimal design of fractional differential active mass dampers for structures equipped with viscoelastic dampers [A]. In: 5th International Conference on Motion and Vibration Control [C]. Australia, 2000. 223-228.
[9] Podlubny I. Fractional differential equations [M]. San Diego: Academic Press, 1999. 33-34.
[10] Lubich C. Discretized fractional calculus [J]. SIAM J Math Anal, 1986, 17(3): 704-719.

Memo

Memo:
Biographies: Wang Zhenbin(1973—), male, graduate; Cao Guangyi(corresponding author), male, doctor, professor, gycao@sjtu.edu.cn.
Last Update: 2004-09-20