|Table of Contents|

[1] Wang Zhiguo, Zhou Laishui, Wang Xiaoping,. Weight-based shape modification of NURBS curvesby constrained optimization [J]. Journal of Southeast University (English Edition), 2004, 20 (4): 458-462. [doi:10.3969/j.issn.1003-7985.2004.04.013]
Copy

Weight-based shape modification of NURBS curvesby constrained optimization()
基于权因子变动和约束优化的NURBS曲线形状修改
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 4
Page:
458-462
Research Field:
Computer Science and Engineering
Publishing date:
2004-12-30

Info

Title:
Weight-based shape modification of NURBS curvesby constrained optimization
基于权因子变动和约束优化的NURBS曲线形状修改
Author(s):
Wang Zhiguo Zhou Laishui Wang Xiaoping
Research Center of CAD/CAM Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
王志国 周来水 王小平
南京航空航天大学CAD/CAM 研究中心, 南京 210016
Keywords:
non-uniform rational B-splines shape modification constrained optimization convex hull
非均匀有理B样条 形状修改 约束优化 凸包
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2004.04.013
Abstract:
A new method for shape modification of non-uniform rational B-splines(NURBS)curves is presented, which is based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve is modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves can be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae are derived to compute new weights of the modified curve, the method is simple and easy to program. Practical examples show that the method is applicable for computer aided design(CAD)system.
提出了一种通过约束优化改变控制顶点相应的权因子, 进行NURBS曲线形状修改的新方法. 运用该方法可使得修改后的NURBS曲线满足给定的几何约束, 如单点约束和多点约束. 同时引入了一些自由参数, 可以在不破坏几何约束的条件下能进一步改变NURBS曲线的形状, 而且能使修改后的曲线形状更自然.由于推导出了明确的公式来计算修改后曲线新的权因子, 因而该方法简单且易于编写程序. 实例表明该方法适用于CAD软件系统.

References:

[1] Piegl L. Modifying the shape of rational B-spline, part 1: curves [J]. Computer Aided Design, 1989, 21(9): 509-518.
[2] Au C K, Yuen M F. Unified approach to NURBS curve manipulation [J]. Computer Aided Design, 1995, 27(2): 85-93.
[3] Fowler B, Bartels R. Constrained-based curve manipulation [J]. IEEE Computer Graphics and Applications, 1993, 13(5): 43-49.
[4] Sánchez R J. A simple technique for NURBS shape modification [J]. IEEE Computer Graphics and Applications, 1997, 17(1): 52-59.
[5] Hu S M, Li Y F, Ju T, et al. Modifying the shape of NURBS surfaces with geometric constraints [J]. Computer Aided Design, 2001, 33(12): 903-912.
[6] Hu S M, Zhu X, Sun J G. Shape modification of NURBS surfaces via constrained optimization [J]. Journal of Software, 2000, 11(12): 1567-1571.
[7] Terzopoulos D. Elastically deformable models [J]. Computer Graphics, 1987, 21(4): 205-214.
[8] Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form design [J]. Computer Graphics, 1991, 25(4): 327-334.
[9] Welch W, Witkin A. Variational surface modeling [J]. Computer Graphics, 1992, 26(2): 157-166.

Memo

Memo:
Biographies: Wang Zhiguo(1977—), male, graduate; Zhou Laishui(corresponding author), male, doctor, professor, zlsme@nuaa.edu.cn.
Last Update: 2004-12-20