[1] Gomez-Skarmeta A F, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification [J]. Fuzzy Sets and Systems, 1999, 106(2): 179-188.
[2] Tsoukalas L H, Uhrig R E. Fuzzy and neural approaches in engineering [M]. New York: Wiley, 1997.
[3] Cordon O, Herrera F, Hoffmann F, et al. Genetic fuzzy systems: evolutionary tuning and learning of fuzzy rule bases [M]. Singapore: World Scientific, 2001.
[4] Babuska R, Bersini H, Linkens D A, et al. Future prospects for fuzzy systems and technology [EB/OL].http: //www.erudit.de/erudit/newsletters/news61/pag e5.htm. 2000-11-21/2004-09-17.
[5] Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
[6] Xing Zongyi, Hu Weili, Jia Limin. A fuzzy clustering based approach for generating interpretable fuzzy models [A]. In: Proc of the Third International Conference on Machine Learning and Cybernetics [C]. Shanghai, 2004. 2093-2097.
[7] Xing Zongyi, Jia Limin. Research on input variable selection for numeric data based fuzzy modeling [A]. In: Proc of Int Conf on Machine Learning and Cybernetics [C]. Xi’an, 2003. 2737-2740.
[8] Bezdek J C. Pattern recognition with fuzzy objective algorithm [M]. New York: Plenum Press, 1981.
[9] Gustafson D E, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix [A]. In: Proc of IEEE Conf on Decision and Control [C]. San Diego, 1979. 761-766.
[10] Setnes M, Roubos H. Transparent fuzzy modeling using fuzzy clustering and GA’s. [A]. In: Proc of IEEE Int Conf on Fuzzy Systems [C]. Seou, 1999. 198-202.