|Table of Contents|

[1] Zeng Jianjiang, Chen Wenliang, Zhai Jianjun,. Compression of finite element hybrid mesh [J]. Journal of Southeast University (English Edition), 2005, 21 (2): 165-169. [doi:10.3969/j.issn.1003-7985.2005.02.010]
Copy

Compression of finite element hybrid mesh()
有限元混合网格的压缩
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 2
Page:
165-169
Research Field:
Computer Science and Engineering
Publishing date:
2005-06-30

Info

Title:
Compression of finite element hybrid mesh
有限元混合网格的压缩
Author(s):
Zeng Jianjiang Chen Wenliang Zhai Jianjun
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
曾建江 陈文亮 翟建军
南京航空航天大学航空宇航学院, 南京 210016
Keywords:
finite element model mesh compression
有限元模型 网格 压缩
PACS:
TP391.72
DOI:
10.3969/j.issn.1003-7985.2005.02.010
Abstract:
A method for encoding and compressing finite element models is proposed.The model may be various non-simple topological structures and contain any combinations of beams, triangular elements and quadrilateral elements.First the model is subdivided into simple meshes that are orientable and manifold.Based on the Edgebreaker algorithm, 13 labelled pairs are introduced for quadrilateral meshes and five other labelled pairs are introduced for triangles.Then the connectivity information of mixed triangle/quadrilateral meshes is coded in a direct manner.Two other bits are used to record the wireframe information.For the pure wireframe model, Taubin’s method is extended to compress it.The compression algorithm is implemented and evaluated.Experiments with several models show that the method achieves excellent compression ratios.
提出了一个对有限元模型进行编码压缩的方法.该模型的拓扑结构可以是任意型式, 允许包含四边形单元、三角形单元和梁(杆)单元.有限元模型首先分解成一系列的可定向的流形模型.基于Edgebreaker算法, 针对四边形网格遍历的情况引入13对标记, 同时对混合网格中的三角形用5对标记来表示.这样, 混合网格的连接信息可以采用一种直接的方式进行编码.然后再使用2比特位记录模型中的线框信息.对于完全线框模型, 采用扩展后的Taubin方法进行压缩.该压缩算法已经实现并进行了测试.多个复杂模型的压缩实验表明该方法具有很好的压缩效率.

References:

[1] Zeng J.A web-based CAD system [J].Journal of Materials Processing Technology, 2003, 139(1-3):229-232.
[2] Touma C, Gotsman C.Triangle mesh compression [A].In:Davis W, Booth K, Fourier A, eds.Proceedings of the 24th Conference on Graphics Interface [C].San Francisco, 1998.26-34.
[3] Gumhold S, Strasser W.Real time compression of triangle mesh connectivity [A].In:Proceedings of SIGGRAPH[C].Orlando, USA, 1998.133-140.
[4] Li J, Kuo C.Progressive coding of 3D graphics models [J].Proceedings of the IEEE, 1998, 86(6):1052-1063.
[5] Rossignac J.Edgebreaker:connectivity compression for triangular meshes [J].IEEE Transactions on Visualization and Computer Graphics, 1999, 5(1):47-61.
[6] Bajaj C, Pascucci V, Zhuang G.Single resolution compression of arbitrary triangular meshes with properties [A].In:IEEE Data Compression Conference [C].San Francisco, 1999.307-316.
[7] Taubin G, Rossignac J.Geometric compression through topological surgery [J].ACM Transactions on Graphics, 1998, 17(2):84-115.
[8] King D, Rossignac J.Guaranteed 3.67V bit encoding of planar triangle graphs [A].In:Proceedings of the 11th Canadian Conference on Computation Geometry [C].Vancouver, British Columbia, Canada, 1999.146-149.
[9] King D, Rossignac J, Szymczak A.Connectivity compression for irregular quadrilateral meshes TR-99-36[R]. USA:Georgia Institute of Technology, 1999.
[10] Masuda H, Ohbuchi R.Coding topological structure of 3D CAD models [J].Computer Aided Design, 2000, 32(5):367-375.
[11] Taubin G, Gueziec A, Horn W, et al.Progressive forest split compression [A].In:ACM SIGGRAPH [C].Orlando, 1998.123-132.

Memo

Memo:
Biography: Zeng Jianjiang(1971—), male, associate professor, ezengjj@yahoo.com.cn.
Last Update: 2005-06-20