|Table of Contents|

[1] Su Jingxun, Liu Jijun,. Reconstruction of density and wave velocityfrom reflection and transmission data [J]. Journal of Southeast University (English Edition), 2005, 21 (2): 233-238. [doi:10.3969/j.issn.1003-7985.2005.02.024]
Copy

Reconstruction of density and wave velocityfrom reflection and transmission data()
利用透射和反射数据反演声波传播的介质密度和波速
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 2
Page:
233-238
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2005-06-30

Info

Title:
Reconstruction of density and wave velocityfrom reflection and transmission data
利用透射和反射数据反演声波传播的介质密度和波速
Author(s):
Su Jingxun, Liu Jijun
Department of Mathematics, Southeast University, Nanjing 210096, China
苏京勋, 刘继军
东南大学数学系, 南京 210096
Keywords:
inverse problem wave equation characteristic theory integral equations
反问题 波动方程 特征理论 积分方程
PACS:
O175.27
DOI:
10.3969/j.issn.1003-7985.2005.02.024
Abstract:
Consider an inverse problem of reconstructing the coefficient in a linear wave equation on an inhomogeneous slab with density ρ(z)and wave velocity c(z).The inversion input information is the reflection and transmission data corresponding to a point source.By applying the characteristic theory for hyperbolic equations, we establish an integral system from which ρ(z)and c(z)can be recovered simultaneously.In contrast to some known results, our inverse approach is carried out for depth variable, rather than for travel-time variable.Therefore inversion results in this paper are more appropriate for the physical interpretation of a medium slab.
研究点源作用下线性波动方程多个系数的反演问题, 其中介质密度ρ(z)和波速c(z)为待求量.通过波动方程的特征理论, 利用点源产生的反射数据和透射数据, 建立了同时反演密度ρ(z)和波速c(z)的封闭积分系统.与已有的结果相比, 本文求解反问题是直接在深度变量z而非传输时间变量x下进行的, 因此更有助于结果的物理解释.

References:

[1] Bube K P, Burridge R.The 1-D inverse problem of reflection seismology[J].SIAM Review, 1983, 25(4):497-559.
[2] Gan Q X.A new iterative method for solving the coefficient inverse problem of the wave equation [J].Comm Pure Appl Math, 1986, 39:307-322.
[3] RaKesh P S.Impedance inversion from transmission data for the wave equation [J].Wave Motion, 1996, 24(3):263-274.
[4] Liu J J, Wang Y M.On uniqueness of an inverse problem for a 1-D wave equation from transmission data [J].SIAM J Appl Math, 1997, 57(1):195-204.
[5] He S, Strom S.The electromagnetic inverse problem in the time domain for a dissipative slab and a point source using invariant imbedding:reconstruction of the permittivity an conductivity [J].J Comput Appl Math, 1992, 42(1):137-155.
[6] Sjöberg D.Reconstruction of nonlinear material properties for homogeneous, isotropic slabs using electromagnetic waves [J].Inverse Problems, 1999, 15(2):431-444.
[7] Romanov V G, He S.Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation [J].Inverse Problems, 2000, 16(2):447-459.
[8] Wall D J N, Lundstedt J.Inverse problems involving the one-way wave equation:medium function reconstruction[J].Mathematics and Computers in Simulation, 1999, 50(5, 6):489-510.
[9] Courant R, Hilbert D.Methods of mathematical physics[M].New York:John Wiley, 1962.49-66.

Memo

Memo:
Biographies: Su Jingxun(1980—), male, graduate;Liu Jijun(corresponding author), male, doctor, professor, jjliu@seu.edu.cn.
Last Update: 2005-06-20