|Table of Contents|

[1] Wang Youguo, Wu Lenan,. Stochastic resonance based on correlation coefficientin parallel array of threshold devices [J]. Journal of Southeast University (English Edition), 2006, 22 (4): 479-483. [doi:10.3969/j.issn.1003-7985.2006.04.008]
Copy

Stochastic resonance based on correlation coefficientin parallel array of threshold devices()
并行阈值阵列中基于相关系数的随机谐振
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
22
Issue:
2006 4
Page:
479-483
Research Field:
Information and Communication Engineering
Publishing date:
2006-12-30

Info

Title:
Stochastic resonance based on correlation coefficientin parallel array of threshold devices
并行阈值阵列中基于相关系数的随机谐振
Author(s):
Wang Youguo1, 2, Wu Lenan1
1School of Information Science and Engineering, Southeast University, Nanjing 210096, China
2School of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
王友国1, 2, 吴乐南1
1东南大学信息科学与工程学院, 南京 210096; 2南京邮电大学数理学院, 南京 210003
Keywords:
stochastic resonance correlation coefficient threshold array
随机谐振 相关系数 阈值阵列
PACS:
TN911.7;TN911.2
DOI:
10.3969/j.issn.1003-7985.2006.04.008
Abstract:
The phenomenon of stochastic resonance(SR)based on the correlation coefficient in a parallel array of threshold devices is discussed.For four representative noises:the Gaussian noise, the uniform noise, the Laplace noise and the Cauchy noise, when the signal is subthreshold, noise can improve the correlation coefficient and SR exists.The efficacy of SR can be significantly enhanced and the maximum of the correlation coefficient can dramatically approach to one as the number of the threshold devices in the parallel array increases.Two theorems are presented to prove that SR has some robustness to noises in the parallel array.These results further extend the applicability of SR in signal processing.
基于相关系数讨论了并行阈值阵列中的随机谐振现象.对于4种典型噪声:高斯噪声、均匀噪声、拉普拉斯噪声和柯西噪声, 当信号在阈下时, 噪声能改善信号间的相关系数, 随机谐振现象存在;随着并行阈值阵列中阈值单元数的增加, 相关系数的最大值迅速地趋于1, 随机谐振功效极大地提高.给出2个定理证明在极大阈值网络中随机谐振现象对噪声具有一定的鲁棒性.这些结果进一步拓展了随机谐振在信号处理中的应用.

References:

[1] McNamara B, Wiesenfeld K.Theory of stochastic resonance [J].Physical Review A, 1989, 39(9):4854-4869.
[2] Zozor S, Amblard P O.On the use of stochastic in sine detection [J].Signal Processing, 2002, 82(3):353-367.
[3] Mitaim S, Kosko B.Adaptive stochastic resonance [J].Proceedings of the IEEE, 1998, 86(11):2152-2183.
[4] Kosko B, Mitaim S.Stochastic resonance in noisy threshold neurons [J].Neural Networks, 2003, 16(5):755-761.
[5] Godivier X, Chapeau-Blondeau F.Stochastic resonance in the information capacity of a nonlinear dynamic system [J].International Journal of Bifurcation and Chaos, 1998, 8(3):581-589.
[6] Chapeau-Blondeau F, Godivier X.Theory of stochastic resonance in signal transmission by static nonlinear systems [J].Physical Review E, 1997, 55(2):1478-1495.
[7] Chapeau-Blondeau F.Stochastic resonance and optimal detection of pulse trains by threshold devices [J].Digital Signal Processing, 1999, 9(3):162-177.
[8] Collins J J, Chow C C, Imhoff T T.Stochastic resonance without tuning [J].Nature, 1995, 376(6537):236-238.
[9] Collins J J, Chow C C, Capela A C, et al.Aperiodic stochastic resonance [J].Physical Review E, 1996, 54(5):5575-5584.
[10] Stemmler M.A single spike suffices:the simplest form of stochastic resonance in model neurons [J].Network:Computation in Neural System, 1996, 61(7):687-716.
[11] Greenwood P E, Ward L M, Wefelmeyer W.Statistical analysis of stochastic resonance in a simple setting [J].Physical Review E, 1999, 60(4):4687-4695.
[12] Papadopoulos H C, Wornell G W, Oppenheim A V.Low-complexity digital encoding strategies for wireless sensors networks [A].In:Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing[C].Seattle, WA, USA, 1998, 6:3273-3276.
[13] Jung P.Stochastic resonance and optimal design of threshold detectors [J].Physics Letters A, 1995, 207(1, 2):93-104.
[14] Bulsara A R, Zador A.Threshold detection of wideband signals:A noise-induced maximum in the mutual information [J].Physical Review E, 1996, 54(3):2125-2188.
[15] Gammaitoni L.Stochastic resonance and dithering effect in threshold physical system [J].Physical Review E, 1995, 52(5):4691-4698.
[16] McDonnell M D, Abbott D.A characterization of supra-threshold stochastic resonance in an array of comparators by correlation coefficient [J].Fluctuation and Noise Letters, 2002, 2(3):213-228.
[17] Feller W.An introduction to probability theory and its application [M].New York:Wiley, 1966.
[18] Papoulis A.Probability, random variables, and stochastic processes [M].New York:McGraw-Hill, 1991.

Memo

Memo:
Biographies: Wang Youguo(1968—), male, graduate;Wu Lenan(corresponding author), male, doctor, professor, wuln@seu.edu.cn.
Last Update: 2006-12-20