|Table of Contents|

[1] Li Yuanlu, Yu Shenglin,. Frequency domain identificationof non-integer order dynamical systems [J]. Journal of Southeast University (English Edition), 2007, 23 (1): 47-50. [doi:10.3969/j.issn.1003-7985.2007.01.011]
Copy

Frequency domain identificationof non-integer order dynamical systems()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
23
Issue:
2007 1
Page:
47-50
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2007-03-30

Info

Title:
Frequency domain identificationof non-integer order dynamical systems
Author(s):
Li Yuanlu Yu Shenglin
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Keywords:
non-integer order dynamical system non-integer order system identification generalized Levy method weighted iteration method
PACS:
O231
DOI:
10.3969/j.issn.1003-7985.2007.01.011
Abstract:
Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems.The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems.Then, the weighted iteration method is presented to overcome the shortcomings of the first method.Results show that the proposed methods have better performance compared with the integer order identification method.For the non-integer order systems, the proposed methods have the better fitting for the system frequency response.For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response.At the same time, the proposed algorithms are more stable.

References:

[1] Ljung L.System identification:theory for the user [M].Sweden:Prentice Hall, 1987:168-194.
[2] Pintelon R, Guillaume P, Rolain Y.Parametric identification of transfer functions in the frequency domain: A survey [J].IEEE Trans on Automatic Control, 1994, 39(11):2245-2259.
[3] Battaglia J L, Lay L L, Batsale J C, et al.Heat flow estimation through inverted non integer identification models [J].International Journal of Thermal Science, 2000, 39(3):374-389.
[4] Darling R, Newman J.On the short behavior of porous intercalation electrodes[J].J Electrochem Soc, 1997, 144(9):3057-3063.
[5] Poinot T, Trigeassou J C.Identification of fractional systems using an output-error technique[J].Nonlinear Dynam, 2004, 38(13):133-154.
[6] Metzler R, Nonnenmacher T F.Fractional diffusion:exact representations of spectral functions [J].J Phys A:Math Gen, 1997, 30(4):1089-1093.
[7] Metzler R, Schick W G, Kilian H G, et al.Relaxation in filled polymers:a fractional calculus approach [J].J Chem Phys, 1995, 103(16):7180-7186.
[8] Schiessel H, Metzler R, Blumen A, et al.Generalized viscoelastic models:their fractional equations with solutions [J].J Phys A:Math Gen, 1995, 28(23):6567-6584.
[9] Wang Zhenbin, Cao Guangyi, Zhu Xinjian.Identification algorithm for a kind of fractional order system [J].Journal of Southeast University:English Edition, 2004, 20(3):297-302.
[10] Hartley T T, Lorenzo F C.Fractional system identification:an application using continuous order-distribution[J].Signal Processing, 2003, 83(11):2287-2300.
[11] Dorcak L, Lesko V, Kostial I.Identification of fractional-order dynamical systems [EB/OL].(2002-04-15)[2006-03-10].http://arxiv.org/abs/math/0204187.
[12] Levy E.Complex curve fitting [J].IRE Transactions on Automatic Control, 1959, 4(3):37-43.

Memo

Memo:
Biographies: Li Yuanlu(1973—), male, graduate;Yu Shenglin(corresponding author), male, professor, yushmt@nuaa.edu.cn.
Last Update: 2007-03-20