[1] Doebling S W, Farrar C R.The state of the art in structural identification of constructed facilities [R].Los Alamos:Los Alamos National Laboratory, 1999.
[2] Yeung W T, Smith J W.Damage detection in bridges using neural networks for pattern recognition of vibration signatures [J].Engineering Structures, 2005, 27(5):685-698.
[3] Ding Y L, Li A Q, Miao C Q.Theoretical research on structural damage alarming of long-span bridges using wavelet packet analysis [J].Journal of Southeast University:English Edition, 2005, 21(4):459-462.
[4] Farrar C R, Lieven N A.Damage prognosis:the future of structural health monitoring [J].Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences, 2007, 365(1851):623-632.
[5] Xiao C, Qu W L, Tan D M.An application of data fusion technology in structural health monitoring and damage identification [C]//Smart Structures and Materials 2005:Smart Sensor Technology and Measurement Systems. Bellingham, WA, USA, 2005:451-461.
[6] Steinberg A N, Bowman C L, White F E.Revisions to the JDL data fusion model [C]//Sensor Fusion:Architectures, Algorithms, and Applications Ⅲ.Orlando, Florida, USA, 1999:430-441.
[7] Liang A, An D X, Zhou D H, et al.A finite-horizon adaptive Kalman filter for linear systems with unknown disturbances [J].Signal Processing, 2004, 84(11):2175-2194.
[8] Niu G, Han T, Yang B, et al.Multi-agent decision fusion for motor faults diagnosis [J].Mechanical Systems and Signal Processing, 2007, 21(3):1285-1299.
[9] Liu T, Li A Q, Ding Y L, et al.Damage identification method for continuous beam bridges based on information fusion and modal strain energy [C]//Proceedings of International Conference on Health Monitoring of Structure, Material and Environment. Nanjing:Southeast University Press, 2007:602-606.
[10] Bao Y Q, Li H.Application of information fusion and Shannon entropy in structural damage detection [C]//Health Monitoring of Structural and Biological Systems 2007. San Diego, California, USA, 2007:101-109
[11] Hall D L.Mathematical techniques in multi-sensor data fusion [M].Boston:Atech House, 1992:20-25.
[12] Hall D L.Perspectives on the fusion of image and non-image data [C]//Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop. Los Alamitos, California, USA, 2003:217-220.
[13] Shafer G A.A mathematical theory of evidence [M]. New Jersey:Princeton University Press, 1976:33-36.