|Table of Contents|

[1] Wu Jianzhuan, Lin Wensong,. Some results on circular chromatic number of a graph [J]. Journal of Southeast University (English Edition), 2008, 24 (2): 253-256. [doi:10.3969/j.issn.1003-7985.2008.02.027]
Copy

Some results on circular chromatic number of a graph()
图的圆色数的一些结果
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
24
Issue:
2008 2
Page:
253-256
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2008-06-03

Info

Title:
Some results on circular chromatic number of a graph
图的圆色数的一些结果
Author(s):
Wu Jianzhuan Lin Wensong
Department of Mathematics, Southeast University, Nanjing 211189, China
吴建专 林文松
东南大学数学系, 南京 211189
Keywords:
(k d)-coloring r-circular-coloring circular chromatic number Mycielski’s graph
(k d)-着色 r-圆着色 圆色数 Mycielski图
PACS:
O157.5
DOI:
10.3969/j.issn.1003-7985.2008.02.027
Abstract:
For two integers k and d with(k, d)=1 and k≥2d, let Gdk be the graph with vertex set {0, 1, …, k-1} in which ij is an edge if and only if d≤|i-j|≤k-d. The circular chromatic number χc(G)of a graph G is the minimum of k/d for which G admits a homomorphism to Gdk.The relationship between χc(G-v)and χc(G)is investigated.In particular, the circular chromatic number of Gdk-v for any vertex v is determined.Some graphs with χc(G-v)c(G)-1 for any vertex v and with certain properties are presented.Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ-1+1 is proved, where χ is the chromatic number of G and α is its independence number.
kd是2个互素的正整数且k≥2d.Gdk 是一个图, 它的顶点集合为{0, 1, …, k-1}, 边集合为{ij|d≤|i-j≤k-d, i, j=0, 1, …, k-1}.G的圆色数χc(G)定义为使得图GGdk 同态的2个正整数kd的最小比值k/d.研究了χc(G)和χc(G-v)之间的关系, 对任意顶点v求出了χc(Gdk-v)的精确值, 给出了具有对任意顶点χc(G-v)c(G)-1和其他特定性质的图类;并对图的圆色数的一些下界进行了探讨, 给出了图的圆色数达到下界χ-1+1的充要条件, 这里χα分别是图G的点色数和独立数.

References:

[1] Vince A.Star chromatic number [J].J Graph Theory, 1988, 12(4):551-559.
[2] Bondy J A, Hell P.A note on the star chromatic number [J].J Graph Theory, 1990, 14(4):479-482.
[3] Zhu X.Circular chromatic number—a survey [J].Discrete Math, 2001, 229(1/2/3):371-410.
[4] Zhou B.Some theorems concerning the star chromatic number of a graph [J].J Combin Theory Ser B, 1997, 70(2):245-258.
[5] Zhu X.Star chromatic number and products of graphs [J].J Graph Theory, 1992, 16(6):557-569.
[6] Golumbic M C.Algorithmic graph theory and perfect graphs [M].Academic Press, 1980.
[7] Hossein H, Zhu X.Circular chromatic number of subgraphs [J].J Graph Theory, 2003, 44(2):95-105.
[8] Mycielski J.Sur le coloriage des graphes [J].Colloq Math, 1995, 3(1):161-162.
[9] Chang G J, Huang L, Zhu X.Circular chromatic numbers of Mycielski’s graphs [J].Discrete Math, 1999, 205(1/2/3):23-27.
[10] Lam P C B, Lin W S, Gu G H, et al.Circular chromatic number and a generalization of the construction of mycielski [J].J Combin Theory Ser B, 2003, 89(2):195-205.

Memo

Memo:
Biography: Wu Jianzhuan(1970—), female, associate professor, jzwujz@yahoo.com.cn.
Foundation item: The National Natural Science Foundation of China(No.10671033).
Citation: Wu Jianzhuan, Lin Wensong.Some results on circular chromatic number of a graph[J].Journal of Southeast University(English Edition), 2008, 24(2):253-256.
Last Update: 2008-06-20