|Table of Contents|

[1] Cai Miaohong, Jin Le, He Feng, Wu Lenan, et al. Federated UKF algorithm for mobile location estimationwith TDOA/Doppler measurements [J]. Journal of Southeast University (English Edition), 2009, 25 (3): 294-298. [doi:10.3969/j.issn.1003-7985.2009.03.002]
Copy

Federated UKF algorithm for mobile location estimationwith TDOA/Doppler measurements()
基于TDOA/Doppler 测量的联邦UKF移动位置估计算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 3
Page:
294-298
Research Field:
Electromagnetic Field and Microwave Technology
Publishing date:
2009-09-30

Info

Title:
Federated UKF algorithm for mobile location estimationwith TDOA/Doppler measurements
基于TDOA/Doppler 测量的联邦UKF移动位置估计算法
Author(s):
Cai Miaohong Jin Le He Feng Wu Lenan
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
蔡苗红 金乐 何峰 吴乐南
东南大学信息科学与工程学院, 南京 210096
Keywords:
data fusion mobile location estimation federated filtering unscented Kalman filter(UKF)
数据融合 移动位置估计 联邦滤波 无迹卡尔曼滤波器
PACS:
TN957.51
DOI:
10.3969/j.issn.1003-7985.2009.03.002
Abstract:
In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter(UKF)is presented.The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters.The subfilters receive the two groups of independently detected time difference of arrival(TDOA)measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator.Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved.Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation.In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone.The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE)and mean error cumulative distribution function(CDF).
为了进一步提高移动台的跟踪和定位性能, 提出了一种基于联邦滤波结构和简化UKF的移动位置最优估计与融合新方法.该算法以Singer移动台运动模型作为参考系统, 以简化UKF滤波器作为子滤波器, 对2组独立检测的TDOA和Doppler测量值进行局部估计;然后在主滤波器中, 对子滤波器的估计结果按标量加权进行最优融合, 得到全局最优或次最优融合估计结果;最后主滤波器利用全局估计结果对子滤波器和参考系统进行反馈和信息重置, 以进行下一步估计.仿真试验中, 对该算法用于移动台位置估计的效果和性能进行评估, 并与基于TDOA和基于Doppler的简化UKF方法做比较.仿真结果表明, 该算法能有效降低移动台位置估计的误差和方差, 具有良好的均方根误差和均值误差CDF性能.

References:

[1] Federal Communications Commission.Revision of the commissions rules to insure compatibility with enhanced 911 emergency calling systems, technical report RM-8143 [R].Washington DC, 1996.
[2] Fang Z P, Deng P, Liu L.Wireless position location in cellular network[M].Beijing:Publishing House of Electronics Industry, 2002:1-30;64-67.(in Chinese)
[3] Bar-Shalom Y.Negative correlation and optimal tracking with Doppler measurements[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3):1117-1120.
[4] Wang J, He P, Long T.Use of the radial velocity measurement in target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2):401-413.
[5] Kleine-Ostmann Thomas, Bell Amy E.A data fusion architecture for enhanced position estimation in wireless networks[J].IEEE Communications Letters, 2001, 5(8):343-345.
[6] Gan Q, Harris C J.Comparison of two measurement fusion methods for Kalman-filter based multisensor data fusion[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):273-280.
[7] Deng Z L.Information fusion filtering theory with applications[M].Harbin:Harbin Institute of Technology Press, 2007:275-281;356-357.(in Chinese)
[8] Carlson Neal A.Federated square root filter for decentralized parallel processes [J].IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3):517-525.
[9] Signer Robert A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(4):473-483.
[10] Julier S J, Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE, 2004, 92(3):401-422.
[11] Hao Y L, Xiong Z, Sun F.Comparison of unscented Kalman filters[C]//Proceedings of IEEE International Conference on Mechatronics and Automation.Harbin, China, 2007:895-899.
[12] Liu Y, Zhu J B, Hu Z T, et al.Dynamic modeling and simplified UKF for reentry vehicle[C]//Proceedings of IEEE Congress on Image and Signal Processing.Sanya, China, 2008:436-440.

Memo

Memo:
Biographies: Cai Miaohong(1983—), female, graduate;Wu Lenan(corresponding author), male, doctor, professor, wuln@seu.edu.cn.
Foundation item: The Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.706028).
Citation: Cai Miaohong, Jin Le, He Feng, et al.Federated UKF algorithm for mobile location estimation with TDOA/Doppler measurements[J].Journal of Southeast University(English Edition), 2009, 25(3):294-298.
Last Update: 2009-09-20