|Table of Contents|

[1] Cheng Rong,. Periodic solutions of non-autonomous differential delay equationswith superlinear properties [J]. Journal of Southeast University (English Edition), 2009, 25 (3): 419-422. [doi:10.3969/j.issn.1003-7985.2009.03.028]
Copy

Periodic solutions of non-autonomous differential delay equationswith superlinear properties()
具有超线性性质的非自治微分方程的周期解
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 3
Page:
419-422
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2009-09-30

Info

Title:
Periodic solutions of non-autonomous differential delay equationswith superlinear properties
具有超线性性质的非自治微分方程的周期解
Author(s):
Cheng Rong
Department of Mathematics, Southeast University, Nanjing 210096, China
成荣
东南大学数学系, 南京 210096
Keywords:
periodic solution delay equation Hamiltonian system linking theorem
周期解 时滞方程 哈密顿系统 环绕定理
PACS:
O175
DOI:
10.3969/j.issn.1003-7985.2009.03.028
Abstract:
The existence of periodic solutions of a class of non-autonomous differential delay equations with the form x′(t)=-∑n-1k=1f(t, x(t-kr))is considered, where r>0 is a given constant and f∈C(R×R, R)is odd in x, r-periodic in t and satisfies some superlinear conditions at origin and at infinity.First, the delay system is changed to an equivalent Hamiltonian system.Then the existence of periodic solutions of the Hamiltonian system is studied.Periodic solutions of the Hamiltonian system can be obtained by critical points of a functional defined on a Hilbert space, i.e., points satisfying φ′(z)=0.By using a linking theorem in critical point theory, the existence of critical points of the functional is obtained.Therefore, the existence of periodic solutions for the Hamiltonian system and its equivalent differential delay equation is established.
研究了具有形式x′(t)=-∑n-1k=1f(t, x(t-kr))的非自治时滞微分方程周期解的存在性, 其中r>0是一个给定的常数, f∈C(R×R, R)对变量x是奇的, 对变量t是r-周期的, 而且在原点和无穷远处满足超线性性质.首先将此方程转化成一个与之等价的哈密顿系统, 然后研究了哈密顿系统的周期解的存在性.哈密顿系统的周期解由一个定义在Hilbert空间上的变分泛函φ(z)的临界点获得, 即使得φ′(z)=0的点.运用临界点理论中的一个环绕定理, 得到此变分泛函的临界点的存在性.从而建立哈密顿系统以及与之等价的时滞微分方程的周期解的存在性定理.

References:

[1] Furumochi T.Existence of periodic solutions of one-dimensional differential-delay equations [J].Tohoku Math J, 1978, 30(1):13-35.
[2] Cunningham W J.A nonlinear differential-difference equation of growth [J].Proc Nat Acad Sci, 1954, 40(5):709-713.
[3] Jones G S.The existence of periodic solutions of f′(x)=-αf(x(t-1)){1+f(x)}[J].J Math Anal Appl, 1962, 5(3):435-450.
[4] Belair J, Mackey M C.Consumer memory and price fluctuation commodity markets:an integro-differential model [J].J Diff Eq, 1989, 1(2):299-325.
[5] Kaplan J, Yorke J.Ordinary differential equations which yield periodic solutions of differential delay equations [J].J Math Anal Appl, 1974, 48(2):317-327.
[6] Nussbaum R D.Periodic solutions of special differential delay equations:an example in non-linear functional analysis [J].Proceedings of the Royal Society of Edinburgh, 1978, 81A(1):131-151.
[7] Li J, He X.Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems [J].Nonlinear Anal TMA, 1998, 31(1):45-54.
[8] Li J, He X, Liu Z.Hamiltonian symmetric groups and multiple periodic solutions of differential delay equations [J].Nonlinear Anal TMA, 1999, 35(4):457-474.
[9] Fei G.Multiple periodic solutions of differential delay equations via Hamiltonian systems(Ⅰ)[J].Nonlinear Anal TMA, 2006, 65(1):25-39.
[10] Fei G.Multiple periodic solutions of differential delay equations via Hamiltonian systems(Ⅱ)[J]. Nonlinear Anal TMA, 2006, 65(1):40-58.
[11] Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations [C]//CBMS Regional Conf Ser in Math.Miami, USA, 1986:32-33.
[12] Chang K C.Critical point theory and applications [M].Shanghai:Shanghai Science and Technology Press, 1986.(in Chinese)
[13] Fei G.On periodic solutions of superquadratic Hamiltonian systems [J].Electronic J Diff Eq, 2002, 2002(8):1-12.
[14] Long Y, Zehnder E.Morse theory for forced oscillations of asymptotically linear Hamiltonian systems [C]//Stochastic Processes in Physics and Geometry.Singapore:World Scientific, 1990:528-563.

Memo

Memo:
Biography: Cheng Rong(1977—), male, doctor, mathchr@163.com.
Citation: Cheng Rong.Periodic solutions of non-autonomous differential delay equations with superlinear properties[J].Journal of Southeast University(English Edition), 2009, 25(3):419-422.
Last Update: 2009-09-20