|Table of Contents|

[1] Yin Cuicui, Zhang Fubao, Huang Chengshan,. Infinitely many periodic solutionsfor second-order Hamiltonian systems [J]. Journal of Southeast University (English Edition), 2009, 25 (4): 549-551. [doi:10.3969/j.issn.1003-7985.2009.04.028]
Copy

Infinitely many periodic solutionsfor second-order Hamiltonian systems()
二阶哈密顿系统的无限多周期解
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 4
Page:
549-551
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2009-12-30

Info

Title:
Infinitely many periodic solutionsfor second-order Hamiltonian systems
二阶哈密顿系统的无限多周期解
Author(s):
Yin Cuicui, Zhang Fubao, Huang Chengshan
Department of Mathematics, Southeast University, Nanjing 211189, China
尹翠翠, 张福保, 黄成山
东南大学数学系, 南京 211189
Keywords:
variant fountain theorem second-order Hamiltonian system infinitely periodic solutions even functional
喷泉定理 二阶哈密顿系统 无限多周期解 偶泛函
PACS:
O175
DOI:
10.3969/j.issn.1003-7985.2009.04.028
Abstract:
The existence of high energy periodic solutions for the second-order Hamiltonian system (t)+A(t)u(t)=∇F(t, u(t))with convex and concave nonlinearities is studied, where F(t, u)=F11(t, u)+F22(t, u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory.
研究了二阶哈密顿系统 (t)+A(t)u(t)=∇F(t, u(t))的高能量周期解的存在性问题, 其中F(t, u)=F11(t, u)+F22(t, u), 而F11(t, u)和F22(t, u)分别满足某种凸性及凹性条件.利用喷泉定理及其推广获得了上述哈密顿系统在F为偶泛函的条件下存在无穷多个解的结果, 在一定程度上本质地推广和补充了已有的临界点理论中的某些结论.

References:

[1] Mawhin J, Williem M.Critical point theory and Hamiltonian systems [M].New York: Springer Verlag, 1989.
[2] Ding Y H.Existence and multiplicity results for homocilinic solutions to a class of Hamiltonian systems[J].Nonlinear Analysis, 1995, 25(11): 1095-1113.
[3] Bartsch T, Willem M.On an elliptic equation with concave and convex nonlinearities[J].Proc Amer Math Soc, 1995, 123(11): 3555-3561.
[4] Tang C L.Existence and multiplicity of periodic solutions for nonautonomous second-order systems[J].Nonlinear Anal TMA, 1998, 32(3): 299-304.
[5] Wang Z Q.On a superlinear elliptic equation [J].Ann Inst H Poincare Anal Nonlineaire, 1991, 8: 43-57.
[6] Tang C L, Wu X P.Notes on periodic solutions of subquadratic second-order Hamiltonian systems [J].J Math Anal Appl, 2003, 285(1): 8-16.
[7] Zou W M.Variant fountain theorems and their applications[J].Manuscripta Math, 2001, 104(3): 343-358.
[8] Zou W M.Infinitely many solutions for Hamiltonian systems[J].J Differential Equations, 2002, 186(1): 141-164.
[9] Tang C L, Wu X P.Periodic solutions for a class of nonautonomous subquadratic second-order Hamiltonian systems[J].J Math Anal Appl, 2002, 275(2): 870-882.
[10] Zou W M, Schechter M.Critical point theory and its applications [M].New York:Springer Verlag, 2006.

Memo

Memo:
Biographies: Yin Cuicui(1985—), female, graduate; Zhang Fubao(corresponding author), male, doctor, professor, 101009933@seu.edu.cn.
Citation: Yin Cuicui, Zhang Fubao, Huang Chengshan.Infinitely many periodic solutions for second-order Hamiltonian systems[J].Journal of Southeast University(English Edition), 2009, 25(4): 549-551.
Last Update: 2009-12-20