|Table of Contents|

[1] Qi Chenhao, Wu Lenan,. Digital broadcast channel estimation with compressive sensing [J]. Journal of Southeast University (English Edition), 2010, 26 (3): 389-393. [doi:10.3969/j.issn.1003-7985.2010.03.004]
Copy

Digital broadcast channel estimation with compressive sensing()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 3
Page:
389-393
Research Field:
Information and Communication Engineering
Publishing date:
2010-09-30

Info

Title:
Digital broadcast channel estimation with compressive sensing
Author(s):
Qi Chenhao Wu Lenan
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
Keywords:
channel estimation compressive sensing(CS) digital radio mondiale(DRM) orthogonal frequency division multiplexing(OFDM)
PACS:
TN911.5
DOI:
10.3969/j.issn.1003-7985.2010.03.004
Abstract:
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing(CS)is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI)digital radio mondiale(DRM)standard, the subspace pursuit(SP)algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit(OMP)algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares(LS)channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.

References:

[1] Donoho D L. Compressed sensing [J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306.
[2] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Trans Inf Theory, 2006, 52(12): 5406-5425.
[3] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Trans Sig Proc, 1993, 41(12): 3397-3415.
[4] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans Inf Theory, 2007, 53(12): 4655-4666.
[5] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J]. IEEE Trans Inf Theory, 2009, 55(5): 2230-2249.
[6] Neira L R, Lowe D. Optimized orthogonal matching pursuit approach [J]. IEEE Sig Proc Lett, 2002, 9(4): 137-140.
[7] Andrle M, Neira L R, Sagianos E. Backward-optimized orthogonal matching pursuit approach [J]. IEEE Sig Proc Lett, 2004, 11(9): 705-708.
[8] Qi C H, Wu L N. Sparse recovery algorithms for pilot assisted MIMO OFDM channel estimation [J]. IEICE Trans Commun, 2010, E93-B(5):1313-1316.
[9] Cotter S F, Rao B D. Sparse Channel estimation via matching pursuit with application to equalization [J]. IEEE Trans Commun, 2002, 50(3): 374-377.
[10] Sharp M, Scaglione A. Application of sparse signal recovery to pilot-assisted channel estimation [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, NV, USA, 2008: 5296-5299.
[11] European Telecommunication Standards Institute. ETSI ES 201 980 v2.2.1. Digital radio mondiale(DRM)system specification [S]. European Telecommunication Standards Institute, 2005.
[12] Tropp J A. Greed is good: algorithmic results for sparse approximation [J]. IEEE Trans Inf Theory, 2004, 50(10): 2231-2242.
[13] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Trans Inf Theory, 2006, 52(1): 6-18.

Memo

Memo:
Biographies: Qi Chenhao(1981—), male, doctor, lecturer; Wu Lenan(corresponding author), male, doctor, professor, wuln@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.60872075), the National High Technology Research and Development Program of China(863 Program)(No.2008AA01Z227).
Citation: Qi Chenhao, Wu Lenan. Digital broadcast channel estimation with compressive sensing [J].Journal of Southeast University(English Edition), 2010, 26(3):389-393.
Last Update: 2010-09-20