|Table of Contents|

[1] Jiang Yu, Lu Jian,. Combined model of trip mode and destination [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 633-637. [doi:10.3969/j.issn.1003-7985.2010.04.027]
Copy

Combined model of trip mode and destination()
出行方式和目的地联合模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
633-637
Research Field:
Traffic and Transportation Engineering
Publishing date:
2010-12-30

Info

Title:
Combined model of trip mode and destination
出行方式和目的地联合模型
Author(s):
Jiang Yu1, Lu Jian2
1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 School of Transportation, Southeast University, Nanjing 210096, China
姜雨1, 陆键2
1南京航空航天大学民航/飞行学院, 南京210016; 2东南大学交通学院, 南京210096
Keywords:
combined choice model discrete choice trip mode and destination sampling
联合选择模型 离散选择 出行方式和目的地 抽样
PACS:
U491.2
DOI:
10.3969/j.issn.1003-7985.2010.04.027
Abstract:
This paper analyzes the characteristics of the destination distribution of trips and proposes a stratified sampling strategy for travel mode choice. The stratified sampling strategy can reduce the size of the alternative set; thus, the computation burden of simulation is decreased. Using the stratified sampling strategy, a combined choice model of the trip mode and destination is developed based on the Bayesian theory. Simulations are carried out to verify the proposed model. The results show that the combined choice model of the trip mode and destination can efficiently simulate travelers’ choice behaviors. Furthermore, the forecasting accuracy of the combined choice model is higher than the one of the gravity model. Therefore, the proposed model is a powerful tool with which to analyze travelers’ behaviors in selecting the trip mode.
在对出行目的地空间分布特点进行分析的基础上, 提出了减少选择枝个数的目的地小区分段抽样策略, 该策略的应用减少了仿真的计算量.采用该抽样策略建立了基于贝叶斯理论的出行者出行方式和目的地联合选择模型.通过对该模型进行仿真计算, 结果表明出行方式和目的地的联合选择模型能够有效地模拟出行者的行为选择.而且, 联合选择模型的预测精度明显高于重力模型.因此, 在分析出行者行为选择方面采用出行方式和目的地的联合选择模型是一种有效的方法.

References:

[1] Train K E. Discrete choice methods with simulation [M]. Berkeley: University of California and National Economic Research Associates, Inc, 2002: 138-139;151-154.
[2] Rich J, Holmblad P M, Hansen C O. A weighted logit freight mode-choice model [J]. Transportation Research Part E, 2009, 45(2):1006-1019.
[3] Cramer J S. The early origins of the logit model [J]. Studies in History and Philosophy of Biological and Biomedical Sciences, 2004, 35(5): 613-626.
[4] Kalouptsidis N, Psaraki V. Approximations of choice probabilities in mixed logit models[J]. European Journal of Operational Research, 2010, 200(1):529-535.
[5] Ka Edi. Foundations of Bayesian theory[J].Journal of Economic Theory, 2007, 132(4):167-188.
[6] Hess S, Bierlaire M, Polak J W. Estimation of value of travel-time saving using mixed logit models [J]. Transportation Research Part A, 2004, 9(3):15-21.
[7] Jiang Y, Lu J, Wang S S. Mode and destination combined based on discrete choice theory [J]. Journal of Highway and Transportation Research and Development, 2007, 24(7):137-142.(in Chinese)
[8] Wang S S. On activity-based discrete choice travel demand analysis model [D]. Nanjing: School of Transportation of Southeast University, 2007.(in Chinese)
[9] Walker Joan. Mixed logit(or logit kernel)model: dispelling misconcepts of identification [J]. Transportation Research Record, 2002(1805): 86-98.
[10] Fosgerau M. Investigating the distribution of the value of travel time saving [J]. Transportation Research Part B, 2006, 40(3): 688-707.

Memo

Memo:
Biography: Jiang Yu(1975—), female, doctor, lecturer, jiangyu07@nuaa.edu.cn.
Citation: Jiang Yu, Lu Jian. Combined model of trip mode and destination[J].Journal of Southeast University(English Edition), 2010, 26(4):633-637.
Last Update: 2010-12-20