|Table of Contents|

[1] Ding Jian, Feng Guizhen, Zhang Fubao, et al. Multiple homoclinics in a non-periodic Hamiltonian system [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 642-646. [doi:10.3969/j.issn.1003-7985.2010.04.029]
Copy

Multiple homoclinics in a non-periodic Hamiltonian system()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
642-646
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2010-12-30

Info

Title:
Multiple homoclinics in a non-periodic Hamiltonian system
Author(s):
Ding Jian1 2 Feng Guizhen3 Zhang Fubao1
1 Department of Mathematics, Southeast University, Nanjing 211189, China
2College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
3 College of Arts and Science, Nanjing Institute of Industry Technology, Nanjing 210046, China
Keywords:
Hamiltonian system homoclinic orbits (C)-condition asymptotical linearity generalized mountain pass theorem
PACS:
O175
DOI:
10.3969/j.issn.1003-7985.2010.04.029
Abstract:
This paper concerns the existence of multiple homoclinic orbits for the second-order Hamiltonian system (¨overz)-L(t)z+Wz(t, z)=0, where L∈C(R, RN22)is a symmetric matrix-valued function and W(t, z)∈C11(R×RN, R)is a nonlinear term. Since there are no periodic assumptions on L(t)and W(t, z)in t, one should overcome difficulties for the lack of compactness of the Sobolev embedding. Moreover, the nonlinearity W(t, z)is asymptotically linear in z at infinity and the system is allowed to be resonant, which is a case that has never been considered before. By virtue of some generalized mountain pass theorem, multiple homoclinic orbits are obtained.

References:

[1] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems[J]. Differential Integral Equations, 1992, 5(5): 1115-1120.
[2] Izydorek M, Janczewska J. Homoclinic solutions for a class of second order Hamiltonian systems[J]. J Differential Equations, 2005, 219(2): 375-389.
[3] Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems[J]. Proc Roy Soc Edinburgh Sect A, 1990, 114(1/2): 33-38.
[4] Korman P, Lazer A C. Homoclinic orbits for a class of symmetric Hamiltonian systems[J]. Electron J Differential Equations, 1994, 1994(1): 1-10.
[5] Coti-Zelati V, Ekeland I, Sere E. A variational approach to homoclinic orbits in Hamiltonian systems[J]. Math Ann, 1990, 288(1): 133-160.
[6] Fei G H. The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign[J]. Chinese Ann Math Ser B, 1996, 17(4): 403-410.
[7] Ou Z Q, Tang C L. Existence of homoclinic solution for the second order Hamiltonian systems[J]. J Math Anal Appl, 2004, 291(1): 203-213.
[8] Felmer P L, De B e Silva E A. Homoclinic and periodic orbits for Hamiltonian systems[J]. Ann Sc Norm Super Pisa Cl Sci, 1998, 26(2): 285-301.
[9] Lü Y, Tang C L. Existence of even homoclinic orbits for second-order Hamiltonian systems[J]. Nonlinear Anal, 2007, 67(7): 2189-2198.
[10] Salvatore A. Homoclinic orbits for a special class of nonautonomous Hamiltonian systems[J]. Nonlinear Anal, 1997, 30(8): 4849-4857.
[11] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems[J]. J Functional Anal, 2001, 187(1): 25-41.
[12] Ding Y H, Li S J. Homoclinic orbits for first order Hamiltonian systems[J]. J Math Anal Appl, 1995, 189(2): 585-601.
[13] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems[J]. Nonlinear Anal, 1995, 25(11): 1095-1113.
[14] Ding Y H, Jeanjean L. Homoclinic orbits for a nonperiodic Hamiltonian system[J]. J Differential Equations, 2007, 237(2): 473-490.
[15] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[C]//Expository lectures from the CBMS Regional Conference. Miami, USA, 1986, 65:96-100.
[16] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity[J]. Nonlinear Anal, 1983, 7(9): 981-1012.
[17] Ding Y H, Szulkin A. Bound states for semilinear Schrodinger equations with sign-changing potential[J]. Calc Var Partial Differential Equations, 2007, 29(3): 397-419.

Memo

Memo:
Biographies: Ding Jian(1978—), male, doctor; Zhang Fubao(corresponding author), male, doctor, professor, zhangfubao@seu.edu.cn.
Citation: Ding Jian, Feng Guizhen, Zhang Fubao.Multiple homoclinics in a non-periodic Hamiltonian system[J].Journal of Southeast University(English Edition), 2010, 26(4):642-646.
Last Update: 2010-12-20