[1] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems[J]. Differential Integral Equations, 1992, 5(5): 1115-1120.
[2] Izydorek M, Janczewska J. Homoclinic solutions for a class of second order Hamiltonian systems[J]. J Differential Equations, 2005, 219(2): 375-389.
[3] Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems[J]. Proc Roy Soc Edinburgh Sect A, 1990, 114(1/2): 33-38.
[4] Korman P, Lazer A C. Homoclinic orbits for a class of symmetric Hamiltonian systems[J]. Electron J Differential Equations, 1994, 1994(1): 1-10.
[5] Coti-Zelati V, Ekeland I, Sere E. A variational approach to homoclinic orbits in Hamiltonian systems[J]. Math Ann, 1990, 288(1): 133-160.
[6] Fei G H. The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign[J]. Chinese Ann Math Ser B, 1996, 17(4): 403-410.
[7] Ou Z Q, Tang C L. Existence of homoclinic solution for the second order Hamiltonian systems[J]. J Math Anal Appl, 2004, 291(1): 203-213.
[8] Felmer P L, De B e Silva E A. Homoclinic and periodic orbits for Hamiltonian systems[J]. Ann Sc Norm Super Pisa Cl Sci, 1998, 26(2): 285-301.
[9] Lü Y, Tang C L. Existence of even homoclinic orbits for second-order Hamiltonian systems[J]. Nonlinear Anal, 2007, 67(7): 2189-2198.
[10] Salvatore A. Homoclinic orbits for a special class of nonautonomous Hamiltonian systems[J]. Nonlinear Anal, 1997, 30(8): 4849-4857.
[11] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems[J]. J Functional Anal, 2001, 187(1): 25-41.
[12] Ding Y H, Li S J. Homoclinic orbits for first order Hamiltonian systems[J]. J Math Anal Appl, 1995, 189(2): 585-601.
[13] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems[J]. Nonlinear Anal, 1995, 25(11): 1095-1113.
[14] Ding Y H, Jeanjean L. Homoclinic orbits for a nonperiodic Hamiltonian system[J]. J Differential Equations, 2007, 237(2): 473-490.
[15] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[C]//Expository lectures from the CBMS Regional Conference. Miami, USA, 1986, 65:96-100.
[16] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity[J]. Nonlinear Anal, 1983, 7(9): 981-1012.
[17] Ding Y H, Szulkin A. Bound states for semilinear Schrodinger equations with sign-changing potential[J]. Calc Var Partial Differential Equations, 2007, 29(3): 397-419.