|Table of Contents|

[1] Ding Jian, Feng Guizhen, Zhang Fubao, et al. Multiple homoclinics in a non-periodic Hamiltonian system [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 642-646. [doi:10.3969/j.issn.1003-7985.2010.04.029]
Copy

Multiple homoclinics in a non-periodic Hamiltonian system()
非周期Hamilton系统的多同宿轨
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
642-646
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2010-12-30

Info

Title:
Multiple homoclinics in a non-periodic Hamiltonian system
非周期Hamilton系统的多同宿轨
Author(s):
Ding Jian1 2 Feng Guizhen3 Zhang Fubao1
1 Department of Mathematics, Southeast University, Nanjing 211189, China
2College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
3 College of Arts and Science, Nanjing Institute of Industry Technology, Nanjing 210046, China
丁建1 2 冯桂珍3 张福保1
1 东南大学数学系, 南京 211189; 2南京信息工程大学数理学院, 南京 210044; 3南京工业职业技术学院人文数理学院, 南京 210046
Keywords:
Hamiltonian system homoclinic orbits (C)-condition asymptotical linearity generalized mountain pass theorem
Hamilton系统 同宿轨 (C)-条件 渐近线性 广义山路定理
PACS:
O175
DOI:
10.3969/j.issn.1003-7985.2010.04.029
Abstract:
This paper concerns the existence of multiple homoclinic orbits for the second-order Hamiltonian system (¨overz)-L(t)z+Wz(t, z)=0, where L∈C(R, RN22)is a symmetric matrix-valued function and W(t, z)∈C11(R×RN, R)is a nonlinear term. Since there are no periodic assumptions on L(t)and W(t, z)in t, one should overcome difficulties for the lack of compactness of the Sobolev embedding. Moreover, the nonlinearity W(t, z)is asymptotically linear in z at infinity and the system is allowed to be resonant, which is a case that has never been considered before. By virtue of some generalized mountain pass theorem, multiple homoclinic orbits are obtained.
研究了二阶Hamilton系统(¨overz)-L(t)z+Wz(t, z)=0多个同宿轨的存在性, 其中LC(R, RN2)是一对称矩阵值函数, W(t, z)∈C1(R×RN, R)是非线性项.由于L(t)和W(t, z)关于t没有周期性假设, 需要克服Sobolev嵌入缺乏紧性的困难.而且, 这里非线性项W(t, z)关于z在无穷远处是渐进线性的且系统允许出现共振, 这一情形之前未被考虑过.借助于广义的山路定理, 得到了多个同宿轨.

References:

[1] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems[J]. Differential Integral Equations, 1992, 5(5): 1115-1120.
[2] Izydorek M, Janczewska J. Homoclinic solutions for a class of second order Hamiltonian systems[J]. J Differential Equations, 2005, 219(2): 375-389.
[3] Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems[J]. Proc Roy Soc Edinburgh Sect A, 1990, 114(1/2): 33-38.
[4] Korman P, Lazer A C. Homoclinic orbits for a class of symmetric Hamiltonian systems[J]. Electron J Differential Equations, 1994, 1994(1): 1-10.
[5] Coti-Zelati V, Ekeland I, Sere E. A variational approach to homoclinic orbits in Hamiltonian systems[J]. Math Ann, 1990, 288(1): 133-160.
[6] Fei G H. The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign[J]. Chinese Ann Math Ser B, 1996, 17(4): 403-410.
[7] Ou Z Q, Tang C L. Existence of homoclinic solution for the second order Hamiltonian systems[J]. J Math Anal Appl, 2004, 291(1): 203-213.
[8] Felmer P L, De B e Silva E A. Homoclinic and periodic orbits for Hamiltonian systems[J]. Ann Sc Norm Super Pisa Cl Sci, 1998, 26(2): 285-301.
[9] Lü Y, Tang C L. Existence of even homoclinic orbits for second-order Hamiltonian systems[J]. Nonlinear Anal, 2007, 67(7): 2189-2198.
[10] Salvatore A. Homoclinic orbits for a special class of nonautonomous Hamiltonian systems[J]. Nonlinear Anal, 1997, 30(8): 4849-4857.
[11] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems[J]. J Functional Anal, 2001, 187(1): 25-41.
[12] Ding Y H, Li S J. Homoclinic orbits for first order Hamiltonian systems[J]. J Math Anal Appl, 1995, 189(2): 585-601.
[13] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems[J]. Nonlinear Anal, 1995, 25(11): 1095-1113.
[14] Ding Y H, Jeanjean L. Homoclinic orbits for a nonperiodic Hamiltonian system[J]. J Differential Equations, 2007, 237(2): 473-490.
[15] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[C]//Expository lectures from the CBMS Regional Conference. Miami, USA, 1986, 65:96-100.
[16] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity[J]. Nonlinear Anal, 1983, 7(9): 981-1012.
[17] Ding Y H, Szulkin A. Bound states for semilinear Schrodinger equations with sign-changing potential[J]. Calc Var Partial Differential Equations, 2007, 29(3): 397-419.

Memo

Memo:
Biographies: Ding Jian(1978—), male, doctor; Zhang Fubao(corresponding author), male, doctor, professor, zhangfubao@seu.edu.cn.
Citation: Ding Jian, Feng Guizhen, Zhang Fubao.Multiple homoclinics in a non-periodic Hamiltonian system[J].Journal of Southeast University(English Edition), 2010, 26(4):642-646.
Last Update: 2010-12-20