|Table of Contents|

[1] Wang Yuzhen, Shi Peihu,. Energy decay for a class of nonlinear wave equationswith a critical potential type of damping [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 651-654. [doi:10.3969/j.issn.1003-7985.2010.04.031]
Copy

Energy decay for a class of nonlinear wave equationswith a critical potential type of damping()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
651-654
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2010-12-30

Info

Title:
Energy decay for a class of nonlinear wave equationswith a critical potential type of damping
Author(s):
Wang Yuzhen Shi Peihu
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
nonlinear wave equation energy decay critical potential type nonlinear damping self-conjugate operator
PACS:
O175.29
DOI:
10.3969/j.issn.1003-7985.2010.04.031
Abstract:
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+x)-1 and a nonlinearity up-1u is studied. The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity d/(dt)E(t)+F(t)=0 and skillfully selecting f(t), g(t), h(t)when the initial data have a compact support. Using the similar method, the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+x+t)-1 and a nonlinearity up-1u is studied, similar solutions are obtained when the initial data have a compact support.

References:

[1] Strauss W A. Nonlinear wave equations[M]. Providence, RI, USA: American Mathematical Society, 1989.
[2] Mochizuki K. Scattering theory for wave equations with dissipative terms[J]. Publ Res Inst Math Sci, 1976, 12(1):383-390.
[3] Mochizuki K, Nakazawa H. Energy decay and asymptotic behavior of solutions to the wave equations with linear dissipation[J]. Publ Res Inst Math Sci, 1996, 32(3):401-414.
[4] Matsumura A. Energy decay of solutions of dissipative wave equations[J]. Proc Japan Acad, 1977, 53(7):232-236.
[5] Todorova G, Yordanov B. Nonlinear dissipative wave equations with potential[EB/OL].(2007)[2009-08-10]. http://www.math.utk.edu/~todorova/ty03-06-11-3-1.pdf.
[6] Todorova G, Yordanov B. Weighted L2-estimates for dissipative wave equations with variable coefficients[J]. J Differential Equations, 2009, 246(12):4497-4518.
[7] Ikehata R. Some remarks on the wave equation with potential type damping coefficients[J]. Int J Pure Appl Math, 2005, 21(1):19-24.
[8] Reissig M. Lp-Lq decay estimates for wave equations with time-dependent coefficients[J]. J Nonlinear Math Phys, 2004, 11(4):534-548.
[9] Wirth J. Wave equations with time-dependent dissipation Ⅰ. Non-effective dissipation[J]. J Differential Equations, 2006, 222(2):487-514.
[10] Wirth J. Wave equations with time-dependent dissipation Ⅱ. Effective dissipation[J]. J Differential Equations, 2007, 232(1):74-103.
[11] Yamazaki T. Asymptotic behavior for abstract wave equations with decaying dissipation[J]. Adv Differential Equations, 2006, 11(4):419-456.
[12] Ikehata R, Inoue Y K. Total energy decay for semilinear wave equations with a critical potential type of damping[J]. Nonlinear Anal, 2008, 69(4):1396-1401.
[13] Bergh J, L(¨overo)fstr(¨overo)m J. Interpolation spaces[M]. Berlin: Springer-Verlag, 1976.

Memo

Memo:
Biographies: Wang Yuzhen(1983—), female, graduate; Shi Peihu(corresponding author), male, doctor, professor, sph2106@yahoo.com.cn.
Foundation item: The National Natural Science Foundation of China(No.10771032).
Citation: Wang Yuzhen, Shi Peihu.Energy decay for a class of nonlinear wave equations with a critical potential type of damping[J].Journal of Southeast University(English Edition), 2010, 26(4):651-654.
Last Update: 2010-12-20