|Table of Contents|

[1] Zhang Yi,. A new method for integration of a Birkhoffian system [J]. Journal of Southeast University (English Edition), 2011, 27 (2): 188-191. [doi:10.3969/j.issn.1003-7985.2011.02.015]
Copy

A new method for integration of a Birkhoffian system()
Birkhoff系统积分的新方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 2
Page:
188-191
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-06-30

Info

Title:
A new method for integration of a Birkhoffian system
Birkhoff系统积分的新方法
Author(s):
Zhang Yi
College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
张毅
苏州科技学院土木工程学院, 苏州 215011
Keywords:
Birkhoffian system integration method basic partial differential equation
Birkhoff系统 积分方法 基本偏微分方程
PACS:
O316
DOI:
10.3969/j.issn.1003-7985.2011.02.015
Abstract:
The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic’ is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff’s equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff’s variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff’s variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
将Vujanovic’提出的用于积分完整非保守系统动力学方程的梯度法思想移植到Birkhoff系统, 给出了Birkhoff系统积分的一种新方法.首先, 列写出Birkhoff系统的运动微分方程;其次, 将2n个Birkhoff变量分成2部分, 并假设其中一部分变量是其余变量及时间的函数, 由此建立拟线性的基本偏微分方程组;如果求出此基本偏微分方程的完全解, 则问题的解由一组代数方程给出.该方法具有灵活性, 对于具体问题可选Birkhoff变量中任意n个变量作为余下n个变量和时间的函数, 其主要困难在于求基本偏微分方程的完全解.一旦求出完全解, 就可以不用进一步积分而求得系统的运动.最后, 举例说明结果的应用.

References:

[1] Mei F X, Liu D, Luo Y. Advanced analytical mechanics [M]. Beijing: Beijing Institute of Technology Press, 1991.(in Chinese)
[2] Rumyantzev V V, Sumbatov A S. On the problem of a generalization of the Hamilton-Jacobi method for nonholonomic systems [J]. ZAMM, 1978, 58(11): 477-481.
[3] Vujanovic’B. On a gradient method in nonconservative mechanics [J]. Acta Mechanica, 1979, 34(3/4): 167-179.
[4] Mei F X. On a gradient method for solving the equations of motion of nonholonomic systems [J]. Journal of Beijing Institute of Technology, 1990, 10(4): 1-11.(in Chinese)
[5] Vujanovic’ B, Strauss A M. Applications of a field method to the theory of vibrations [J]. Journal of Sound and Vibration, 1987, 114(2): 375-387.
[6] Mei F X. Application of a field method of the integration of equations of motion for Chaplygin’s nonholonomic systems [J]. Acta Armamentarii, 1992, 13(1): 47-52.(in Chinese)
[7] Mei F X. On the Birkhoffian mechanics [J]. Int J Nonlinear Mech, 2001, 36(5): 817-834.
[8] Zheng G H, Chen X W, Mei F X. First integrals and reduction of the Birkhoffian system [J]. Journal of Beijing Institute of Technology, 2001, 10(1): 17-22.
[9] Fu J L. The algebraic structure and Poisson integral procedure of dynamic equation for relativistic Birkhoff’s systems [J]. Acta Mathematica Scientia, 2001, 21(1):70-78.(in Chinese)
[10] Luo S K. Generalized energy integral and reduction of a rotational relativistic Birkhoffian system [J]. Chinese Physics, 2002, 11(11): 1097-1110.
[11] Kozlov V V. On the integration theory of equations of nonholonomic mechanics [J]. Regular and Chaotic Dynamics, 2002, 7(2):161-176.
[12] Baclic B S, Vujanovic’ B D. The Hamilton-Jacobi method for arbitrary rheo-linear dynamical systems [J]. Acta Mechanica, 2003, 163(1/2): 51-79.
[13] Guo Y X, Shang M, Luo S K. Poincaré-Cartan integral variants of Birkhoff system [J]. Appl Math Mech, 2003, 24(1): 76-82.
[14] Kovacic I. A field method in the study of weakly non-linear two-degree-of-freedom oscillatory systems [J]. Journal of Sound and Vibration, 2004, 27(1): 464-468.
[15] Kovacic I. On the field method in non-holonomic mechanics [J]. Acta Mechanica Sinica, 2005, 21(2):192-196.
[16] Luo S K, Guo Y X. Routh order reduction method of relativistic Birkhoffian systems [J]. Commun Theor Phys, 2007, 47(2): 209-212.
[17] Ge W K, Mei F X. Time-integral theorems for Birkhoff systems [J]. Acta Phys Sin, 2007, 56(5): 2479-2481.(in Chinese)
[18] Hu C L, Xie J F. A potential integration method for Birkhoffian system [J]. Chin Phys B, 2008, 17(4): 1153-1155.
[19] Mei F X, Shang M. Last multiplier of generalized Hamilton system [J]. Chin Phys Lett, 2008, 25(11): 3837-3839.
[20] Zhang Y. Routh method of reduction for Birkhoffian systems in the event space [J]. Chin Phys B, 2008, 17(12): 4365-4368.
[21] Kovacic I. On the motion of non-linear oscillators with a fractional order restoring force and time variable parameters [J]. Physics Letters A, 2009, 373(21): 1839-1843.
[22] Li Y M, Mei F X. Integral methods for the generalized Birkhoff equations [J]. Acta Phys Sin, 2010, 59(9): 5930-5933.(in Chinese)
[23] Mei F X, Shi R C, Zhang Y F, et al. Dynamics of Birkhoffian system [M]. Beijing: Beijing Institute of Technology Press, 1996.(in Chinese)
[24] Mei F X. Applications of Lie groups and Lie algebras to constrained mechanical systems [M]. Beijing: Science Press, 1999.(in Chinese)

Memo

Memo:
Biography: Zhang Yi(1964—), male, doctor, professor, weidiezh@pub.sz.jsinfo.net.
Foundation item: The National Natural Science Foundation of China(No.10972151).
Citation: Zhang Yi. A new method for integration of a Birkhoffian system[J].Journal of Southeast University(English Edition), 2011, 27(2):188-191.[doi:10.3969/j.issn.1003-7985.2011.02.015]
Last Update: 2011-06-20