|Table of Contents|

[1] Zhu Haixing, Liu Guohua,. On braided Lie algebras [J]. Journal of Southeast University (English Edition), 2011, 27 (2): 227-229. [doi:10.3969/j.issn.1003-7985.2011.02.024]
Copy

On braided Lie algebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 2
Page:
227-229
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-06-30

Info

Title:
On braided Lie algebras
Author(s):
Zhu Haixing Liu Guohua
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
Hopf algebra braided monoidal category braided Lie algebra
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2011.02.024
Abstract:
Let(C, C)be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category(C, C)is investigated. First, a braided C2-commutative algebra in the category(C, C)is defined and three equations on the braiding in the category(C, C)are proved. Secondly, it is verified that(A, [, ])is a left(strict)Jacobi braided Lie algebra if and only if(A, [, ])is a braided Lie algebra, where A is an associative algebra in the category(C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel’d modules and the category of Hopf bimodules.

References:

[1] Kassel C. Quantum groups [M]. New York: Springer-Verlag, 1995: 314-320.
[2] Majid S. Quantum and braided Lie algebra [J]. Journal of Geometry and Physics, 1994, 13(4): 307-356.
[3] Bahturin Y, Fischman D, Montgomery S. On the generalized Lie structure of associative algebras [J]. Israel Journal of Mathematics, 1996, 96(1): 27-48.
[4] Bahturin Y, Fischman D, Montgomery S. Bicharacter, twistings and Scheunert’s theorem for Hopf algebra [J]. Journal of Algebra, 2001, 236(1):246-276.
[5] Cohen M, Fischman D, Westreich S. Schur’s double centralizer theorem for triangular Hopf algebras [J]. Proceedings of the American Mathematical Society, 1994, 122(1): 19-29.
[6] Gomez X, Majid S. Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras [J]. Journal of Algebra, 2003, 261(2): 334-388.
[7] Wang S H. Central invariants of Lie algebras in Yetter-Drinfel’d categories [J]. Science in China Series A, 2000, 43(8): 803-809.
[8] Wang S H. On H-Lie structure of associative algebras in Yetter-Drinfel’d categories[J]. Communications in Algebra, 2002, 30(1):307-325.
[9] Wang S H. An analogue of Kegel’s theorem for quasi-associative algebras [J]. Communications in Algebra, 2005, 33(8):2607-2623.
[10] Wang S H, Zhu H X. On braided Lie structures of algebras in the categories of weak Hopf bimodules [J]. Algebra Colloquium, 2010, 17(4):685-698.
[11] Zhang S C, Zhang Y Z. Braided m-Lie algebras [J]. Letters in Mathematical Physics, 2004, 70(2): 155-167.
[12] Joyal A, Street R. Braided tensor categories[J]. Advance in Mathematics, 1993, 102(1): 20-78.
[13] Sweedler M E. Hopf algebras [M]. New York: Benjamin, 1969: 10-14.
[14] Schauenburg P. Hopf modules and Yetter-Drinfel’d Modules [J]. Journal of Algebra, 1994, 169(3):874-890.

Memo

Memo:
Biographies: Zhu Haixing(1979—), male, graduate; Liu Guohua(corresponding author), female, doctor, lecturer, liuguohua2000cn@yahoo.com.cn.
Foundation item: The National Natural Science Foundation of China(No.10871042).
Citation: Zhu Haixing, Liu Guohua.On braided Lie algebras[J].Journal of Southeast University(English Edition), 2011, 27(2):227-229.[doi:10.3969/j.issn.1003-7985.2011.02.024]
Last Update: 2011-06-20