|Table of Contents|

[1] Fang Xiaoli, Wang Shuanhong,. Twisted smash product for Hopf quasigroups [J]. Journal of Southeast University (English Edition), 2011, 27 (3): 343-346. [doi:10.3969/j.issn.1003-7985.2011.03.023]
Copy

Twisted smash product for Hopf quasigroups()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 3
Page:
343-346
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-09-30

Info

Title:
Twisted smash product for Hopf quasigroups
Author(s):
Fang Xiaoli Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
Hopf quasigroup quasimodule twisted smashproduct
PACS:
O153
DOI:
10.3969/j.issn.1003-7985.2011.03.023
Abstract:
In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodule algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions(h1a)⊗h2=(h2a)⊗h1, (aS(h1))⊗h2=(aS(h2))⊗h1 hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.

References:

[1] Klim J, Majid S. Hopf quasigroups and the algebraic 7-sphere[J]. J Algebra, 2010, 323(11): 3067-3110.
[2] Albuquerque H, Majid S. Quasialgebra structure of the octonions[J]. J Algebra, 1999, 220(1):188-224.
[3] Woronowicz S L. Differential calculus on compact matrix pseudogroup(quantum groups)[J]. Comm Math Phys, 1989, 122(1): 125-170.
[4] Perez-Izquierdo J M, Shestakov I P. An envelope for Malcev algebras[J]. J Algebra, 2004, 272(1):379-393.
[5] Montgomery S. Hopf algebras and their actions on rings[M]. Providence, RI, USA: American Mathematical Society, 1993.
[6] Sweedler M. Hopf algebra[M]. New York: Benjamin, 1969.
[7] Brzezinski T. Hopf modules and the fundamental theorem for Hopf(co)quasigroups[J]. International Electronic Journal of Algebra, 2010, 8: 114-128.
[8] Brzezinski T, Jiao Z M. Actions of Hopf quasigroups[EB/OL].(2010-05-14)[2010-08-01]. http://arxiv.org/abs/1005.2496.
[9] Wang S H, Li J Q. On twisted smash products for bimodule algebras and the Drinfeld double[J]. Comm Algebra, 1998, 26(8): 2435-2444.
[10] Molnar R K. Semi-direct products of Hopf algebras[J]. J Algebra, 1977, 47(1): 29-51.

Memo

Memo:
Biographies: Fang Xiaoli(1979—), male, doctor; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.10971188), the Natural Science Foundation of Zhejiang Province(No.Y6110323), Jiangsu Planned Projects for Postdoctoral Research Funds(No.0902081C), Zhejiang Provincial Education Department Project(No.Y200907995), Qiantang Talents Project of Science Technology Department of Zhejiang Province(No.2011R10051).
Citation: Fang Xiaoli, Wang Shuanhong. Twisted smash product for Hopf quasigroups[J].Journal of Southeast University(English Edition), 2011, 27(3):343-346.[doi:10.3969/j.issn.1003-7985.2011.03.023]
Last Update: 2011-09-20