[1] Blackburn S R. A generalization of the discrete Fourier transform: determining the minimal polynomial of a period sequence[J]. IEEE Trans Inf Theory, 1994, 40(5): 1702-1704.
[2] Chen H. Fast algorithms for determining the linear complexity of sequences over GF(pm)with period 2tntn[J]. IEEE Trans Inf Theory, 2005, 51(5): 1854-1856.
[3] Chen H. Reducing the computation of linear complexities of periodic sequences over GF(pm)[J]. IEEE Trans Inf Theory, 2006, 52(12): 5537-5539.
[4] Ding C. A fast algorithm for the determination of linear complexity of sequences over GF(pm)with period pn[C]//Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1991: 141-144.
[5] Ding C, Xiao G, Shan W. The stability theory of stream ciphers(Lecture Notes in Computer Science 561)[M]. Berlin: Springer-Verlag, 1991.
[6] Games R A, Chan A H. A fast algorithm for determining the complexity of a binary sequence with period 2nn[J]. IEEE Trans Inf Theory, 1983, 29(1): 144-146.
[7] Lidl R, Niederreiter H. Finite fields[M]. Addison-Wesley Publishing Company, 1983.
[8] Massey J L. Shift register synthesis and BCH decoding[J]. IEEE Trans Inf Theory, 1969, 15(1): 122-127.
[9] Wei S, Xiao G, Chen Z. A fast algorithm for determining the minimal polynomial of a sequence with 2pn over GF(q)[J]. IEEE Trans Inf Theory, 2002, 48(10): 2754-2758.
[10] Xiao G, Wei S, Lam K Y, et al. A fast algorithm for determining the linear complexity of a sequence with pn over GF(q)[J]. IEEE Trans Inf Theory, 2000, 46(6): 2203-2206.