[1] Zeng H, Cheung Y M. Feature selection and kernel learning for local learning based clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1532-1547.
[2] Jain A K. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters, 2010, 31(8):651-666.
[3] Bouguila N, Almakadmeh K, Boutemedjet S. A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection [J]. Expert Systems with Applications, 2012, 39(7): 6641-6656.
[4] Law M H C, Figueiredo M A T, Jain A K. Simultaneous feature selection and clustering using mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1154-1166.
[5] Markley S C, Miller D J. Joint parsimonious modeling and model order selection for multivariate Gaussian mixtures [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(3):548-559.
[6] Li Y, Dong M, Hua J. Localized feature selection for clustering [J]. Pattern Recognition Letters, 2008, 29(1):10-18.
[7] Allili M S, Ziou D, Bouguila N, et al. Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(10):1373-1377.
[8] Fan W, Bouguila N, Ziou D, Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference [J]. IEEE Transactions on Knowledge and Data Engineering, 2012, in press.
[9] Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396.
[10] Wallace C S, Dowe D L. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions [J]. Statistics and Computing, 2000, 10(1): 73-83.