|Table of Contents|

[1] Dong Lihong, Wang Shengxiang, Wang Shuanhong, et al. Structure theorem for Hopf group-coalgebra [J]. Journal of Southeast University (English Edition), 2013, 29 (1): 103-105. [doi:10.3969/j.issn.1003-7985.2013.01.021]
Copy

Structure theorem for Hopf group-coalgebra()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 1
Page:
103-105
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-03-20

Info

Title:
Structure theorem for Hopf group-coalgebra
Author(s):
Dong Lihong1 2 Wang Shengxiang1 Wang Shuanhong1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
Keywords:
Hopf group-coalgebra Hopf group-comodule algebra two-sided relative Hopf group-comodule
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2013.01.021
Abstract:
Let π be a group with a unit 1; H is a Hopf π-coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative(A, H)-Hopf π-comodule is introduced; then it is obtained that HomHAH(M, N)? H and HOMAA(M, N)are isomorphic as right Hopf π-H-comodules, where HomHAH(M, N)denotes the space of right A-module right H-comodule morphisms and HOMAA(M, N)denotes the rational space of a space HomAA(M, N)of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative(A, H)-Hopf π-comodules is established; that is, EndHHAA(M)#H and ENDAA(M, N)are isomorphic as right Hopf π-H-comodules and algebras.

References:

[1] Doi Y. On the structure of relative Hopf module[J]. Comm Algebra, 1983, 11(3): 243-255.
[2] Ulbrich L H. Smash products and comodules of linear maps[J]. Tsukuba J Math, 1990, 14(2): 371-378.
[3] Turaev V. Homotopy quantum field theory[M]. Zürich, Switzerland: European Mathematical Society, 2010.
[4] Virelizier A. Hopf group-coalgebras[J]. J Pure Appl Algebra, 2002, 171: 75-122.
[5] Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras[J]. Comm Algebra, 2004, 32(9): 3417-3436.
[6] Wang S H. Group entwining structures and group coalgebra Galois extensions[J].Comm Algebra, 2004, 32(9): 3437-3457.
[7] Wang S H. Morita contexts, π-Galois extensions for Hopf π-coalgebras[J]. Comm Algebra, 2006, 34(2): 521-546.
[8] Sweedler M. Hopf algebras[M]. New York: Benjamin, 1969.

Memo

Memo:
Biographies: Dong Lihong(1980—), female, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang2002@yahoo.com.
Foundation items: The Research and Innovation Project for College Graduates of Jiangsu Province(No.CXLX_0094), the Natural Science Foundation of Chuzhou University(No.2010kj006Z).
Citation: Dong Lihong, Wang Shengxiang, Wang Shuanhong. Structure theorem for Hopf group-coalgebra.[J].Journal of Southeast University(English Edition), 2013, 29(1):103-105.[doi:10.3969/j.issn.1003-7985.2013.01.021]
Last Update: 2013-03-20