|Table of Contents|

[1] Xu Weijuan, Lin Jinguan,. Diagnostics in generalized nonlinear modelsbased on maximum Lqq-likelihood estimation [J]. Journal of Southeast University (English Edition), 2013, 29 (1): 106-110. [doi:10.3969/j.issn.1003-7985.2013.01.022]
Copy

Diagnostics in generalized nonlinear modelsbased on maximum Lqq-likelihood estimation()
基于最大Lqq似然估计的广义非线性模型的统计诊断
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 1
Page:
106-110
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-03-20

Info

Title:
Diagnostics in generalized nonlinear modelsbased on maximum Lqq-likelihood estimation
基于最大Lqq似然估计的广义非线性模型的统计诊断
Author(s):
Xu Weijuan Lin Jinguan
Department of Mathematics, Southeast University, Nanjing 211189, China
徐伟娟 林金官
东南大学数学系, 南京 211189
Keywords:
maximum Lqq-likelihood estimation generalized nonlinear regression model case-deletion model generalized Cook distance likelihood distance difference of deviance
最大Lqq似然估计 广义非线性回归模型 数据删除模型 广义Cook距离 似然距离 偏差度
PACS:
O212.4
DOI:
10.3969/j.issn.1003-7985.2013.01.022
Abstract:
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lqq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lqq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lqq-likelihood method than those through the maximum likelihood estimation method.
为了检测数据是否符合给定的模型, 需要对数据进行统计诊断.研究了基于最大Lqq似然估计的广义非线性模型的统计诊断问题.利用3个统计诊断量来检验数据中是否都存在异常点.模拟结果显示, 当样本容量较小时, 使用最大Lqq似然估计方法得到的诊断统计量的结果要比使用极大似然估计(MLE)方法得到的结果大;随着样本容量的增加, 它们之间的区别逐渐减小.因此, 使用最大Lqq似然估计方法比用MLE方法更容易找到数据中的异常点.

References:

[1] Cook R D, Weisberg S. Residual and influence in regression [M]. London: Chapman and Hall, 1982.
[2] Chatterjee S, Hadi A S. Influential observations, high leverage points and outliers in linear regression(with discussion)[J]. Statistical Science, 1986, 1(3): 379-416.
[3] McCullagh P, Nelder J A. Generalized linear models [M]. London: Chapman and Hall, 1989.
[4] Davison A C, Tsai C L. Regression model diagnostics [J]. International Statistical Review, 1992, 60(3): 337-355.
[5] Gay D M, Welsch R E. Maximum likelihood and quasi-likelihood for nonlinear exponential family regression models [J]. Journal of the American Statistical Association, 1988, 83(404): 990-998.
[6] Wei B C and Shi J Q. On statistical models in regression diagnostics [J]. Ann Inst Statist Math, 1994, 46(2):267-278.
[7] Wei B C. Exponential family nonlinear models [M]. Singapore: Springer, 1998.
[8] Ferrari D, Yang Y. Estimation of tail probability via the maximum Lq-likelihood method [R]. Minneapolis, MN, USA: School of Statistics, University of Minnesota, 2007.
[9] Kullback S. Information theory and statistics [M]. Wiley: New York, 1959.
[10] Shannon C E. A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27:379-423.
[11] Havrda J, Charvát F. Quantification method of classification processes: concept of structural entropy [J]. Kibernetika, 1967, 3: 30-35.
[12] Whitmore D A. Inverse Gaussian ratio estimation [J]. Journal of the Royal Statistical Society, Series C(Applied Statistics), 1986, 35(1):8-15.
[13] Wei B C, Lin J G, Xie F C. Statistical diagnosis [M].Beijing: Higher Education Press, 2009.(in Chinese).

Memo

Memo:
Biographies: Xu Weijuan(1977—), female, graduate; Lin Jinguan(corresponding author), male, doctor, professor, jglin@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11171065), the Natural Science Foundation of Jiangsu Province(No.BK2011058).
Citation: Xu Weijuan, Lin Jinguan.Diagnostics in generalized nonlinear models based on maximum Lqq-likelihood estimation[J].Journal of Southeast University(English Edition), 2013, 29(1):106-110.[doi:10.3969/j.issn.1003-7985.2013.01.022]
Last Update: 2013-03-20