|Table of Contents|

[1] Bi Yunrui, Lu Xiaobo, Sun Zhe, Zeng Weili, et al. Fuzzy traffic signal control with DNA evolutionary algorithm [J]. Journal of Southeast University (English Edition), 2013, 29 (2): 207-210. [doi:10.3969/j.issn.1003-7985.2013.02.017]
Copy

Fuzzy traffic signal control with DNA evolutionary algorithm()
基于DNA进化算法的模糊交通信号控制
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 2
Page:
207-210
Research Field:
Computer Science and Engineering
Publishing date:
2013-06-20

Info

Title:
Fuzzy traffic signal control with DNA evolutionary algorithm
基于DNA进化算法的模糊交通信号控制
Author(s):
Bi Yunrui1 Lu Xiaobo1 Sun Zhe2 Zeng Weili3
1School of Automation, Southeast University, Nanjing 210096, China
2Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
3School of Transportation, Southeast University, Nanjing 210096, China
毕云蕊1 路小波1 孙哲2 曾唯理3
1东南大学自动化学院, 南京 210096; 2浙江大学智能系统与控制研究所, 杭州 310027; 3东南大学交通学院, 南京 210096
Keywords:
DNA evolutionary algorithm genetic algorithm(GA) fuzzy control traffic signal control
DNA进化算法 遗传算法 模糊控制 交通信号控制
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2013.02.017
Abstract:
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller(FLC)with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm(GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the proposed method.
为了优化交通信号控制系统, 提出了一种基于DNA进化算法的模糊逻辑控制优化方法.受DNA分子运算特征的启发, DNA进化算法修改了相应的遗传算子.与传统的遗传算法相比, 它可以克服局部搜索能力小和早熟的弱点.通过采用四进制编码方式和执行相应的DNA遗传算子来优化模糊逻辑控制器隶属度函数的参数, 并把优化的参数结果运用到单交叉口交通信号控制.仿真实验结果表明, DNA优化的模糊逻辑控制方法表现更好, 从而证明了该方法的有效性.

References:

[1] Pappis C, Mamdani E. A fuzzy logic controller for a traffic junction [J]. IEEE Transactions on Systems, Man and Cybernetics, 1977, 7(10): 707-717.
[2] Trabia M B, Kaseko M S, Ande M. A two-stage fuzzy logic controller for traffic signals [J]. Transportation Research Part C, 1999, 7(6): 353-367.
[3] Murat Y S, Gedizlioglu E. A fuzzy logic multi-phased signal control model for isolated junctions [J]. Transportation Research Part C, 2005, 13(1): 19-36.
[4] Srinivasan D, Choy M C, Cheu R L. Neural networks for real-time traffic signal control [J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(3): 261-272.
[5] Anderson J J, Sayers T M, Bell M G H. Optimizations of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm [C]//Proceedings of the 9th International Conference on Road Transport Information and Control. London, UK, 1998:186-190.
[6] Garcia-Nieto J, Alba E, Olivera A C. Swarm intelligence for traffic light scheduling: application to real urban areas [J]. Engineering Applications of Artificial Intelligence, 2012, 25(2): 274-283.
[7] Dimitriou L, Tsekeris T, Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow [J]. Transportation Research Part C, 2008, 16(5): 554-573.
[8] Chen X, Wang N. A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction [J]. Chemical Engineering Journal, 2009, 150(2/3): 527-535.
[9] Chen X, Wang N. Optimization of short-time gasoline blending scheduling problem with a DNA based hybrid genetic algorithm [J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(10): 1076-1083.

Memo

Memo:
Biographies: Bi Yunrui(1983—), female, graduate; Lu Xiaobo(corresponding author), male, doctor, professor, xblu@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.60972001), the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163), the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212).
Citation: Bi Yunrui, Lu Xiaobo, Sun Zhe, et al. Fuzzy traffic signal control with DNA evolutionary algorithm[J].Journal of Southeast University(English Edition), 2013, 29(2):207-210.[doi:10.3969/j.issn.1003-7985.2013.02.017]
Last Update: 2013-06-20