|Table of Contents|

[1] Feng Yun, Lin Wensong,. Adjacent vertex-distinguishing total colorings of K^-ss∨Ktt [J]. Journal of Southeast University (English Edition), 2013, 29 (2): 226-228. [doi:10.3969/j.issn.1003-7985.2013.02.021]
Copy

Adjacent vertex-distinguishing total colorings of K^-ss∨Ktt()
K^-ss∨Ktt的邻点可区分全着色
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 2
Page:
226-228
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-06-20

Info

Title:
Adjacent vertex-distinguishing total colorings of K^-ss∨Ktt
K^-ss∨Ktt的邻点可区分全着色
Author(s):
Feng Yun, Lin Wensong
Department of Mathematics, Southeast University, Nanjing 211189, China
冯云, 林文松
东南大学数学系, 南京 211189
Keywords:
adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number join graph
邻点可区分全着色 邻点可区分全色数 连接图
PACS:
O157.5
DOI:
10.3969/j.issn.1003-7985.2013.02.021
Abstract:
Let G be a simple graph and f be a proper total k-coloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined.
f是一个简单图G的正常全k-着色.对G的每一个顶点v, 由出现在v点的颜色以及和v点关联边的颜色构成的集合称为v点的颜色集.如果图G的任意2个相邻顶点的颜色集不相同, 那么f是图G的一个邻点可区分全着色.而使得图G存在这样一种全着色所需要的最小整数k就称为G的邻点可区分全色数.2个顶点不相交的图的连接图指的是这2个图的并图再加上所有连接其中一个图的顶点到另外一个图的顶点的边.确定了s阶空图和t阶完全图的连接图的邻点可区分全色数.

References:

[1] Zhang Z, Qiu P, Xu B, et al. Vertex-distinguishing total coloring of graphs [J]. Ars Combin, 2008, 87(2): 33-45.
[2] Burris A C, Schelp R H. Vertex-distinguishing proper edge-colourings [J]. J Graph Theory, 1997, 26(2):73-82.
[3] Bazgan C, Harkat-Benhamdine A, Li H, et al. On the vertex-distinguishing proper edge-coloring of graphs [J]. J Combin Theory Ser B, 1999, 75(2): 288-301.
[4] Balister P N, Bollobàs B, Schelp R H. Vertex distinguishing colorings of graphs with Δ(G)=2 [J]. Discrete Math, 2002, 252(2): 17-29.
[5] Zhang Z, Liu L, Wang J. Adjacent strong edge coloring of graphs [J]. Appl Math Lett, 2002, 15(5): 623-626.
[6] Zhang Z, Chen X, Li J, et al. On adjacent-vertex-distinguishing total coloring of graphs [J]. Sci China Ser A, 2005, 48(3): 289-299.
[7] Chen X. Adjacent-vertex-distinguishing total chromatic numbers on K2n+1-E(P3)[J]. Int J Pure Appl Math, 2004, 13(1): 19-27.
[8] Bondy J A, Murty U S R. Graph theory [M]. New York: Springer, 2008.
[9] Hulgan J. Concise proofs for adjacent vertex-distinguishing total colorings [J]. Discrete Math, 2009, 309(8): 2548-2550.
[10] West D B. Introduction to graph theory [M]. 2nd ed. London: Prentice Hall, 2001.

Memo

Memo:
Biographies: Feng Yun(1981—), male, graduate; Lin Wensong(corresponding author), male, doctor, professor, wslin@seu.edu.cn.
Foundation item: The Fundamental Research Funds for the Central Universities of China(No.3207013904).
Citation: Feng Yun, Lin Wensong.Adjacent vertex-distinguishing total colorings of K^-ss∨Ktt[J].Journal of Southeast University(English Edition), 2013, 29(2):226-228.[doi:10.3969/j.issn.1003-7985.2013.02.021]
Last Update: 2013-06-20