|Table of Contents|

[1] Hu Changhui, Lu Xiaobo, Du Yijun, Chen Wujun, et al. Direct linear discriminant analysisbased on column pivoting QR decomposition and economic SVD [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 395-399. [doi:10.3969/j.issn.1003-7985.2013.04.008]
Copy

Direct linear discriminant analysisbased on column pivoting QR decomposition and economic SVD()
基于列选主QR分解和节约型SVD的直接线性鉴别分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
395-399
Research Field:
Computer Science and Engineering
Publishing date:
2013-12-20

Info

Title:
Direct linear discriminant analysisbased on column pivoting QR decomposition and economic SVD
基于列选主QR分解和节约型SVD的直接线性鉴别分析
Author(s):
Hu Changhui Lu Xiaobo Du Yijun Chen Wujun
School of Automation, Southeast University, Nanjing 210096, China
Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
胡长晖 路小波 杜一君 陈伍军
东南大学自动化学院, 南京 210096; 东南大学复杂工程系统测量与控制教育部重点实验室, 南京 210096
Keywords:
direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
直接线性鉴别分析 列选主的正交三角分解 节约型奇异值分解 降维 特征提取
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2013.04.008
Abstract:
A direct linear discriminant analysis algorithm based on economic singular value decomposition(DLDA/ESVD)is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular(QR)decomposition and ESVD(DLDA/QR-ESVD)is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
针对传统DLDA算法计算复杂的问题, 提出了DLDA/ESVD算法, 该算法直接使用ESVD降维和提取非零特征值对应的特征向量.然后, 为了提高DLDA/ESVD算法处理高维低秩矩阵的性能, 提出了DLDA/QR-ESVD算法, 该算法使用列选主QR分解降维, 使用ESVD提取非零特征值对应的特征向量.在ORL, FERET和YALE数据库上的实验结果表明, 所提出的2种算法具有几乎相同的性能, 并在计算复杂性和训练时间方面优于传统的DLDA算法.另外, 在随机数据矩阵上的实验结果表明, DLDA/QR-ESVD算法处理高维低秩矩阵的性能优于DLDA/ESVD算法.

References:

[1] Yu H, Yang J. A direct LDA algorithm for high dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067-2070.
[2] Song F X, Zhang D, Wang J Z, et al. A parameterized direct LDA and its application to face recognition [J]. Neurocomputing, 2007, 71(1): 191-196.
[3] Joshi A, Gangwar A, Saquib Z. Collarette region recognition based on wavelets and direct linear discriminant analysis [J]. International Journal of Computer Applications, 2012, 40(9): 35-39.
[4] Paliwal K K, Sharma A. Improved direct LDA and its application to DNA microarray gene expression data [J]. Pattern Recognition Letters, 2010, 31(16): 2489-2492.
[5] Ye J, Li Q. A two-stage linear discriminant analysis via QR-decomposition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 929-941.
[6] Li R H, Chan C L, Baciu G. DLDA and LDA/QR equivalence framework for human face recognition[C]//The 9th IEEE International Conference on Cognitive Informatics(ICCI). Beijing, China, 2010: 180-185.
[7] Golub G, Loan C, Matrix computations [M]. Baltimore, MD, USA: Johns Hopkins University Press, 1983: 170-236.
[8] Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of the Second IEEE Workshop on Applications of Computer Vision. Los Alamitos, CA, USA, 1994: 138-142.
[9] Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104.
[10] Georghiades A, Belhumeur P, Kriegman D. From few to many: illumination cone models for face recognition under variable lighting and pose [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660.
[11] Ye J, Janardan R, Park C H, et al. An optimization criterion for generalized discriminant analysis on undersampled problems [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 982-994.

Memo

Memo:
Biographies: Hu Changhui(1983—), male, graduate; Lu Xiaobo(corresponding author), male, doctor, professor, xblu@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61374194).
Citation: Hu Changhui, Lu Xiaobo, Du Yijun, et al.Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD[J].Journal of Southeast University(English Edition), 2013, 29(4):395-399.[doi:10.3969/j.issn.1003-7985.2013.04.008]
Last Update: 2013-12-20